Enterprise Integration PatternsMessaging Patterns

Message RouterMessage Router

Messaging Patterns

Previous Previous   Next Next

Multiple processing steps in a Pipes and Filters chain are connected by Message Channels.

How can you decouple individual processing steps so that messages can be passed to different filters depending on a set of conditions?

Insert a special filter, a Message Router, which consumes a Message from one Message Channel and republishes it to a different Message Channel channel depending on a set of conditions.

The Message Router differs from the most basic notion of Pipes and Filters in that it connects to multiple output channels. Thanks to the Pipes and Filters architecture the components surrounding the Message Router are completely unaware of the existence of a Message Router. A key property of the Message Router is that it does not modify the message contents. It only concerns itself with the destination of the message.


Related patterns: Channel Adapter, Content-Based Router, Control Bus, Datatype Channel, Dynamic Router, Message Filter, Message, Message Channel, Message History, Introduction to Message Routing, Message Translator, Pipes and Filters, Publish-Subscribe Channel, Transactional Client

Want to track what happened since the book came out? Follow My Ramblings.
Want to read more in depth? Check out My Articles.
Want to see me live? See where I am speaking next.

Enterprise Integration Patterns Find the full description of this pattern in:
Enterprise Integration Patterns
Gregor Hohpe and Bobby Woolf
ISBN 0321200683
650 pages
Creative Commons Attribution License Parts of this page are made available under the Creative Commons Attribution license. You can reuse the pattern icon, the pattern name, the problem and solution statements (in bold), and the sketch under this license. Other portions of the text, such as text chapters or the full pattern text, are protected by copyright.

Table of Contents
Solving Integration Problems using Patterns
Integration Styles
File Transfer
Shared Database
Remote Procedure Invocation
Messaging Systems
Message Channel
Pipes and Filters
Message Router
Message Translator
Message Endpoint
Messaging Channels
Point-to-Point Channel
Publish-Subscribe Channel
Datatype Channel
Invalid Message Channel
Dead Letter Channel
Guaranteed Delivery
Channel Adapter
Messaging Bridge
Message Bus
Message Construction
Command Message
Document Message
Event Message
Return Address
Correlation Identifier
Message Sequence
Message Expiration
Format Indicator
Interlude: Simple Messaging
JMS Request/Reply Example
.NET Request/Reply Example
JMS Publish/Subscribe Example
Message Routing
Content-Based Router
Message Filter
Dynamic Router
Recipient List
Composed Msg. Processor
Routing Slip
Process Manager
Message Broker
Message Transformation
Envelope Wrapper
Content Enricher
Content Filter
Claim Check
Canonical Data Model
Interlude: Composed Messaging
Synchronous (Web Services)
Asynchronous (MSMQ)
Asynchronous (TIBCO)
Messaging Endpoints
Messaging Gateway
Messaging Mapper
Transactional Client
Polling Consumer
Event-Driven Consumer
Competing Consumers
Message Dispatcher
Selective Consumer
Durable Subscriber
Idempotent Receiver
Service Activator
System Management
Control Bus
Wire Tap
Message History
Message Store
Smart Proxy
Test Message
Channel Purger
Interlude: Systems Management Example
Instrumenting Loan Broker
Integration Patterns in Practice
Case Study: Bond Trading System
Concluding Remarks
Emerging Standards
Revision History