Enterprise Integration PatternsMessaging Patterns

File TransferFile Transfer

Messaging Patterns

Previous Previous   Next Next

An enterprise has multiple applications that are being built independently, with different languages and platforms.

How can I integrate multiple applications so that they work together and can exchange information?

Have each application produce files containing information that other applications need to consume. Integrators take the responsibility of transforming files into different formats. Produce the files at regular intervals according to the nature of the business.

An important decision with files is what format to use. Very rarely will the output of one application be exactly what's needed for another, so you'll have to do a fair bit of processing of files along the way. Not just do all the applications that use a file have to read it, you also have to be able to use processing tools on it. As a result, standard file formats have grown up over time. Mainframe systems commonly use data feeds based on the file system formats of COBOL. Unix systems use text based files. The modern fashion is to use XML. An industry of readers, writers, and transformation tools has built up around each of these formats.


Related patterns: Remote Procedure Invocation, Messaging, Shared Database

Want to track what happened since the book came out? Follow My Ramblings.
Want to read more in depth? Check out My Articles.
Want to see me live? See where I am speaking next.

Enterprise Integration Patterns Find the full description of this pattern in:
Enterprise Integration Patterns
Gregor Hohpe and Bobby Woolf
ISBN 0321200683
650 pages
Creative Commons Attribution License Parts of this page are made available under the Creative Commons Attribution license. You can reuse the pattern icon, the pattern name, the problem and solution statements (in bold), and the sketch under this license. Other portions of the text, such as text chapters or the full pattern text, are protected by copyright.

Table of Contents
Solving Integration Problems using Patterns
Integration Styles
File Transfer
Shared Database
Remote Procedure Invocation
Messaging Systems
Message Channel
Pipes and Filters
Message Router
Message Translator
Message Endpoint
Messaging Channels
Point-to-Point Channel
Publish-Subscribe Channel
Datatype Channel
Invalid Message Channel
Dead Letter Channel
Guaranteed Delivery
Channel Adapter
Messaging Bridge
Message Bus
Message Construction
Command Message
Document Message
Event Message
Return Address
Correlation Identifier
Message Sequence
Message Expiration
Format Indicator
Interlude: Simple Messaging
JMS Request/Reply Example
.NET Request/Reply Example
JMS Publish/Subscribe Example
Message Routing
Content-Based Router
Message Filter
Dynamic Router
Recipient List
Composed Msg. Processor
Routing Slip
Process Manager
Message Broker
Message Transformation
Envelope Wrapper
Content Enricher
Content Filter
Claim Check
Canonical Data Model
Interlude: Composed Messaging
Synchronous (Web Services)
Asynchronous (MSMQ)
Asynchronous (TIBCO)
Messaging Endpoints
Messaging Gateway
Messaging Mapper
Transactional Client
Polling Consumer
Event-Driven Consumer
Competing Consumers
Message Dispatcher
Selective Consumer
Durable Subscriber
Idempotent Receiver
Service Activator
System Management
Control Bus
Wire Tap
Message History
Message Store
Smart Proxy
Test Message
Channel Purger
Interlude: Systems Management Example
Instrumenting Loan Broker
Integration Patterns in Practice
Case Study: Bond Trading System
Concluding Remarks
Emerging Standards
Revision History