Enterprise Integration PatternsMessaging Patterns


Messaging Patterns

Previous Previous   Next Next

A Splitter is useful to break out a single message into a sequence of sub-messages that can be processed individually. Likewise, a Recipient List or a Publish-Subscribe Channel is useful to forward a request message to multiple recipients in parallel in order to get multiple responses to choose from. In most of these scenarios, the further processing depends on successful processing of the sub-messages. For example, we want to select the best bid from a number of vendor responses or we want to bill the client for an order after all items have been pulled from the warehouse.

How do we combine the results of individual, but related messages so that they can be processed as a whole?

Use a stateful filter, an Aggregator, to collect and store individual messages until a complete set of related messages has been received. Then, the Aggregator publishes a single message distilled from the individual messages.

The Aggregator is a special Filter that receives a stream of messages and identifies messages that are correlated. Once a complete set of messages has been received (more on how to decide when a set is 'complete' below), the Aggregator collects information from each correlated message and publishes a single, aggregated message to the output channel for further processing.


Related patterns: Scatter-Gather, Introduction to Composed Messaging Examples, Content-Based Router, Control Bus, Correlation Identifier, Composed Message Processor, Event-Driven Consumer, Event Message, Guaranteed Delivery, Message Expiration, Point-to-Point Channel, Publish-Subscribe Channel, Recipient List, Resequencer, Splitter, Transactional Client

Want to track what happened since the book came out? Follow My Ramblings.
Want to read more in depth? Check out My Articles.
Want to see me live? See where I am speaking next.

Enterprise Integration Patterns Find the full description of this pattern in:
Enterprise Integration Patterns
Gregor Hohpe and Bobby Woolf
ISBN 0321200683
650 pages
Creative Commons Attribution License Parts of this page are made available under the Creative Commons Attribution license. You can reuse the pattern icon, the pattern name, the problem and solution statements (in bold), and the sketch under this license. Other portions of the text, such as text chapters or the full pattern text, are protected by copyright.

Table of Contents
Solving Integration Problems using Patterns
Integration Styles
File Transfer
Shared Database
Remote Procedure Invocation
Messaging Systems
Message Channel
Pipes and Filters
Message Router
Message Translator
Message Endpoint
Messaging Channels
Point-to-Point Channel
Publish-Subscribe Channel
Datatype Channel
Invalid Message Channel
Dead Letter Channel
Guaranteed Delivery
Channel Adapter
Messaging Bridge
Message Bus
Message Construction
Command Message
Document Message
Event Message
Return Address
Correlation Identifier
Message Sequence
Message Expiration
Format Indicator
Interlude: Simple Messaging
JMS Request/Reply Example
.NET Request/Reply Example
JMS Publish/Subscribe Example
Message Routing
Content-Based Router
Message Filter
Dynamic Router
Recipient List
Composed Msg. Processor
Routing Slip
Process Manager
Message Broker
Message Transformation
Envelope Wrapper
Content Enricher
Content Filter
Claim Check
Canonical Data Model
Interlude: Composed Messaging
Synchronous (Web Services)
Asynchronous (MSMQ)
Asynchronous (TIBCO)
Messaging Endpoints
Messaging Gateway
Messaging Mapper
Transactional Client
Polling Consumer
Event-Driven Consumer
Competing Consumers
Message Dispatcher
Selective Consumer
Durable Subscriber
Idempotent Receiver
Service Activator
System Management
Control Bus
Wire Tap
Message History
Message Store
Smart Proxy
Test Message
Channel Purger
Interlude: Systems Management Example
Instrumenting Loan Broker
Integration Patterns in Practice
Case Study: Bond Trading System
Concluding Remarks
Emerging Standards
Revision History