
Gregor Hohpe
ThoughtWorks, Inc.

2© Copyright 2003 Gregor Hohpe, ThoughtWorks, Inc.

What Are We Talking About?

- Complex applications
- Support vital business functions

Communication between two or
more applications, users, or
business partners

- Solution to recurring problem
- Capture knowledge and pass it on
- Establish Vocabulary / Language

3© Copyright 2003 Gregor Hohpe, ThoughtWorks, Inc.

Why Do We Need Integration?

• More than one application
(often hundreds or thousands)
– Single application too hard and

inflexible
– Vendor specialization
– Corporate politics / organization
– Historical reasons, e.g. mergers

• Customers see enterprise as a
whole, want to execute
business functions that span
multiple applications

• Need to share information

Isolated Systems

Unified Access
and Process

4© Copyright 2003 Gregor Hohpe, ThoughtWorks, Inc.

Why Is Integration Difficult?

• Inherently large-scale and complex
• Underlying paradigm different from object-

oriented app. development
• Limited control over entities / applications
• Spans many levels of abstraction
• Far-reaching implications, business critical
• Intertwined with corporate politics
• Few standards exist, still evolving

5© Copyright 2003 Gregor Hohpe, ThoughtWorks, Inc.

• Most existing literature either
vendor-specific or very high level

• Lots of talk about new standards
and specs, but little about best
practices for actual use (sort of like
Java in early 2000)

• Good integration architects hard to
find – even in this job market

Why Hasn’t It Gotten Any Easier?

High-Level Vision

Implementation

MapMessage msg = session.c
msg.setStringProperty(PROP
msg.setString(ITEMID, bid.

MapMessage msg = session.c
msg.setStringProperty(PROP
msg.setString(ITEMID, bid.

Big Gap!
Integration
Patterns

Integration
Patterns

Architecture / Design

Integration Patterns help us to:
• Reduce the gap between high-level

vision and reality
• Capture architects’ knowledge and

experience so it can be reused

6© Copyright 2003 Gregor Hohpe, ThoughtWorks, Inc.

A Brief History in Integration:
70s: Batch Data Exchange

• Export information into a common file
format, read into the target system

• Example: COBOL Flat files

System

A

System

A

System

B

System

B

E
x
p
o
r
t

E
x
p
o
r
t

I
m
p
o
r
t

I
m
p
o
r
tCustomer

Data
Database

• Good physical decoupling
• Language and system

independent

• Data transfer not immediate
• Systems may be out of sync
• Large amounts of data

Pros: Cons:

7© Copyright 2003 Gregor Hohpe, ThoughtWorks, Inc.

80s: Central Database

• Make all applications access a common
database

System
A

System
A

System
B

System
B

Customer
Data

System
C

System
C

• Consistent Data
• Reporting

• Integration of data,
not business functions

• Difficult to find common
representation

Pros: Cons:

8© Copyright 2003 Gregor Hohpe, ThoughtWorks, Inc.

Get Credit Score

90s: Remote Procedure Calls

• One application calls another directly to
perform a function.

• Data necessary for the call is passed
along. Results are returned to calling
application.

System

A

System

A

System

B

System

B740

• Data exchanged only as
needed

• Integration of business
function, not just data

• Works well only with small
number of systems

• Fragile (tight coupling)
• Performance

Pros: Cons:

9© Copyright 2003 Gregor Hohpe, ThoughtWorks, Inc.

Pros: Cons:

Now: Messaging

• Publish events to a bus or queue
• Allow multiple subscribers to a message

System
A

System
A

System
B

System
B

System
C

System
C

Customer
Missed payment

• Data exchanged only as
needed

• Integration of business
function, not just data

• Loose coupling, asynchron.

• Not familiar
• Difficult to test / debug
• Sometimes you need a

synchronous response

Messaging Channel

10© Copyright 2003 Gregor Hohpe, ThoughtWorks, Inc.

Many Vendors Provide Messaging Tools

• “EAI Vendors”
– IBM WebSphere MQ
– TIBCO
– WebMethods
– SeeBeyond
– CrossWorlds etc.

• Java Messaging (JMS)
• Microsoft .NET System.Messaging
• Asynchronous Web Services

We are looking for vendor-neutral, practical
design guidelines and best practices

Gartner “Magic Quadrant” for
Integration and Middleware

(08/2001)

11© Copyright 2003 Gregor Hohpe, ThoughtWorks, Inc.

What Do We Need to Make Messaging
Work?

1. Transport messages ApplicationApplicationApplicationApplication

2. Design messages

3. Route the message to
the proper destination

ApplicationApplication

4. Transform the message
to the required format

5. Produce and consume
messages

ApplicationApplicationApplicationApplication

ApplicationApplication

6. Manage and Test the
System

12© Copyright 2003 Gregor Hohpe, ThoughtWorks, Inc.

What Do We Need to Make Messaging
Work?

1. Transport messages

3. Route the message to
the proper destination

4. Transform the message
to the required format

5. Produce and consume
messages

6. Manage and Test the
System

Channel Patterns

Routing Patterns

Transformation Patterns

Endpoint Patterns

Management Patterns

2. Design messages Message Patterns

13© Copyright 2003 Gregor Hohpe, ThoughtWorks, Inc.

The Integration Pattern Language
(subset)

• Channel Patterns
– Message Channel
– Point-to-Point Channel
– Publish Subscribe

Channel
• Message Patterns

– Return Address
– Correlation Identifier

• Routing Patterns
– Message Router
– Splitter
– Aggregator
– Resequencer
– Auction

• Transformation
Patterns
– Data Enricher
– Content Filter
– Check Baggage

• Endpoint Patterns
– Polling Consumer
– Event-Driven Consumer
– Messaging Mapper

• Management Patterns
– Message Store
– Test Message

ApplicationApplication

14© Copyright 2003 Gregor Hohpe, ThoughtWorks, Inc.

So What Does One of These Patterns
Look Like?

• Context
• Problem
• Forces
• Solution
• Picture
• Resulting Context
• Known Uses
• Related Patterns
• Example
• Icon (optional)

Warning:

If you have worked with
messaging, you are likely

to have used some of
these solutions.

Patterns are harvested
from actual use, not

“invented”!

We start simple, go into
more depth later.

Warning:

If you have worked with
messaging, you are likely

to have used some of
these solutions.

Patterns are harvested
from actual use, not

“invented”!

We start simple, go into
more depth later.

15© Copyright 2003 Gregor Hohpe, ThoughtWorks, Inc.

Channel Pattern:
Message Channel
• Asynchronous, reliable communication
• Sender can send message even if receiver is not

available
• Sender considers message delivered as soon as

message is placed in channel
• The channel stores the message until the receiver

is available
• Sender and receiver agree on a channel

Message Channel

Sender
Publisher
Producer

Receiver
Subscriber
Consumer

16© Copyright 2003 Gregor Hohpe, ThoughtWorks, Inc.

Channel Pattern:
Point-to-Point Channel
• How can the caller be sure that only one receiver

will receive the document or perform the call ?
– A single recipient for a each message
– In case of multiple possible consumers, exactly one will

receive the message (“competing consumers”)
– Message Queue, Document / Command model
– E.g., MSMQ, IBM WebSphere MQ, JMS Queue

Message Channel“New
Order”

17© Copyright 2003 Gregor Hohpe, ThoughtWorks, Inc.

Channel Pattern:
Publish-Subscribe Channel
• How can the sender broadcast an event to all

interested receivers?
– Multiple recipients for a single message
– Sender has no knowledge of recipients
– Message is stored in the channel until each recipient

consumed it
– Broadcast / Multicast, Event model
– E.g. TIBCO RendezVous, JMS Topic

Message Channel

Multiple
Subscribers

“Address
Changed”

18© Copyright 2003 Gregor Hohpe, ThoughtWorks, Inc.

Message Pattern:
Return Address
• How does the receiver of a message know where

to send the reply message?
– Loose coupling means the receiver may not know who

the sender is.
– Reply channel is usually different from request channel.

Channel A
SenderSender ReceiverReceiver

Channel B

“Reply to
Channel B”
“Reply to

Channel B”

Proc. Request,
Send Result to

Channel
Specified by
Return Addr.

Proc. Request,
Send Result to

Channel
Specified by
Return Addr.

• Sender includes a Return Address in the request
message. Receiver sends response message to
channel specified by Return Address.

Response

Request

19© Copyright 2003 Gregor Hohpe, ThoughtWorks, Inc.

Message Pattern:
Correlation Identifier
• How does a sender that receives a reply message

know which request the reply belongs to?
– Asynchronous messages may arrive out of order
– Messages may undergo different processing steps

SenderSender ReceiverReceiver
Channel B

Channel A

• Each reply message should contain a Correlation
Identifier, a unique identifier that indicates which
request message this reply is for.

Msg 1Msg 1 Msg 2Msg 2

Msg 3
(Corr. 2)
Msg 3

(Corr. 2)
Msg 4

(Corr. 1)
Msg 4

(Corr. 1)

Inspect Corr.
ID of incoming

message to
associate with
orig.request

Inspect Corr.
ID of incoming

message to
associate with
orig.request

Can be
sequence of
components

Can be
sequence of
components

20© Copyright 2003 Gregor Hohpe, ThoughtWorks, Inc.

Routing Pattern:
Message Router
• How can we decouple individual processing steps

so that messages can be passed to different
components depending on some conditions?
– Different channels depending on message content, run-

time environment (e.g. test vs. production), …
– Do not want to burden sender with decision (decoupling)

“New
Order”

Widget
Inventory

Gadget
Inventory

• Use a special component, a Message Router, to route
messages from one channel to a different channel.

Message
Router

21© Copyright 2003 Gregor Hohpe, ThoughtWorks, Inc.

Routing Pattern:
Recipient List
• How do we route a message to a dynamically

specified list of recipients?
– Want more control than Pub-Sub channel
– Want to determine recipients by message

AA

BB

CC

DD
Recipient List

Processor

A
B
D

List of
recipient

addresses

List of
recipient

addresses

• Use a Recipient List to first compile a list of
intended recipients and then deliver the message
to every recipient in the list.
– More control, (possibly) tighter coupling

22© Copyright 2003 Gregor Hohpe, ThoughtWorks, Inc.

Routing Pattern:
Splitter
• How can we process a message if it contains

multiple elements, each of which may have to be
processed in a different way?
– Treat each element independently
– Need to avoid missing or duplicate elements
– Make efficient use of network resources

“New
Order”

• Use a Splitter to break out the composite message into a
series of individual messages, each containing data related
to one item.

Splitter Order
Item 1

Order
Item 2

Order
Item 3

Message
Router

23© Copyright 2003 Gregor Hohpe, ThoughtWorks, Inc.

Routing Pattern:
Aggregator
• How do we combine the results of individual, but

related messages back into a single message?
– Responses may be out of sequence
– Responses may be delayed

Aggregator Validated
Order

Item 1 Item 2 Item 3

• An Aggregator manages the reconciliation of
multiple, related messages into a single message
– Stateful component
– When do we send the aggregate message?

– Wait for all responses - Take first best answer
– Wait for amount of time - Wait until criteria met

24© Copyright 2003 Gregor Hohpe, ThoughtWorks, Inc.

Routing Pattern:
Auction
• We need to send a message to a dynamic set of

recipients, and return a single message that
incorporates the responses.

Request
For Quote

Vendor AVendor A

Vendor BVendor B

Pub-Sub
Channel

Quote

Aggregator
“Best”
Quote

Vendor CVendor C

Auction

25© Copyright 2003 Gregor Hohpe, ThoughtWorks, Inc.

Example:
Combining Routing Patterns

• Receive an order, get best offer for each
item from vendors, combine into validated
order.

SequencerNew
Order

AggregatorValidated
Order

Quote Request
for each item

“Best” Quote
for each item

Vendor AVendor A

Vendor BVendor B

Pub-Sub
Channel

Quote

Aggregator

Vendor CVendor C

Auction

26© Copyright 2003 Gregor Hohpe, ThoughtWorks, Inc.

Example Continued:
Replace Auction with Recipient List

• Only vendors on the preferred vendor list
get to bid on an item.

SequencerNew
Order

AggregatorValidated
Order

Quote Request
for each item

“Best” Quote
for each item

Vendor AVendor A

Vendor BVendor B

Recipient
List

Quote

Aggregator

Vendor CVendor C

Enricher

Preferred
Vendor List

27© Copyright 2003 Gregor Hohpe, ThoughtWorks, Inc.

Transformation Patterns

• Data Enricher
– How do we communicate with another

system if the message originator does not
have all the required data items available?

• Content Filter
– How do we deal with a large message when

we are interested only in a few data items?
• Check Baggage

– How can we reduce the data volume of a
message sent across the network without
sacrificing information content?

28© Copyright 2003 Gregor Hohpe, ThoughtWorks, Inc.

Management Patterns

• Message Store
– How can we report

against message
information without
disturbing the loosely
coupled and transient
nature of a
messaging system?

• Test Message
– How can we detect a

component that is
actively processing
messages, but
garbles outgoing
messages due to an
internal fault?

Message
Store

ProcessorProcessor

Test
Message

Test Message
Injector

Test Message
Separator

Test Data
Generator

?? Test Data
Verifier

Test
Result

Console

29© Copyright 2003 Gregor Hohpe, ThoughtWorks, Inc.

In Summary…

• We established a visual and verbal
language to describe integration solutions

• Individual patterns can be combined to
describe larger solutions

• We need no fancy tools besides
PowerPoint (or paper and pencil)

• We stayed away from vendor jargon
• Each pattern describes trade-offs and

considerations not included in this
presentation

30© Copyright 2003 Gregor Hohpe, ThoughtWorks, Inc.

What Are These Patterns NOT?

• NOT a precise specification language
– (e.g., see UML Profile for EAI)

• NOT a visual programming environment
• NOT a new “methodology”
• NOT complete
• NOT fool-proof
• NOT a silver bullet

31© Copyright 2003 Gregor Hohpe, ThoughtWorks, Inc.

If This Was Interesting…

• Gregor Hohpe, ghohpe@thoughtworks.com
• Visit www.eaipatterns.com:

– Lots of detail
– Bibliography, related papers
– Sign up for the mailing list

• info@enterpriseintegrationpatterns.com
• Expect a book to hit the shelves sometime later

this year: “Patterns of Enterprise Integration”
• More on patterns: www.hillside.net
• ThoughtWorks: www.thoughtworks.com

