SD

2003

Enterprise Integration Patterns

Gregor Hohpe
ThoughtWorks, Inc.

ThoughtWorks'

The art of heavy lifting.

What Are We Talking About?

Enterprise - Complex applications
- Support vital business functions

Integ ration Communication between two or
more applications, users, or
business partners

Patterns - Solution to recurring problem
- Capture knowledge and pass it on
- Establish Vocabulary / Language

i © Copyright 2003 Gregor Hohpe, ThoughtWorks, Inc. 2

Why Do We Need Integration?

e More than one application Isolated Systems

(often hundreds or thousands)

— Single application too hard and
Inflexible

— Vendor specialization
— Corporate politics / organization
— Historical reasons, e.g. mergers

« Customers see enterprise as a
whole, want to execute
business functions that span
multiple applications

Unified Access

 Need to share information and Process

i © Copyright 2003 Gregor Hohpe, ThoughtWorks, Inc. 3

jﬂﬁﬁ -«

Why Is Integration Difficult?

* Inherently large-scale and complex

* Underlying paradigm different from object-
oriented app. development

 Limited control over entities / applications
e Spans many levels of abstraction

« Far-reaching implications, business critical
 |ntertwined with corporate politics

e Few standards exist, still evolving

i © Copyright 2003 Gregor Hohpe, ThoughtWorks, Inc.

Why Hasn't It Gotten Any Easier?

* Most existing literature either High-Level Vision
vendor-specific or very high level

e Lots of talk about new standards
and specs, but little about best
practices for actual use (sort of like

Java in early 2000) Architecture / Design

« Good integration architects hard to
find — even in this job market -

nsg. set String(l TEM D, bi d.

Integration Patterns help us to: iag) <etstnl Lrg%ipirefii((ﬁ
* Reduce the gap between high-level

vision and reality Implementation
» Capture architects’ knowledge and
experience so it can be reused

© Copyright 2003 Gregor Hohpe, ThoughtWorks, Inc. 5

A Brief History in Integration:

. /0s: Batch Data Exchange

e EXport information into a common file
format, read into the target system

 Example: COBOL Flat files

» Good physical decoupling
e Language and system
Independent

B 0
System X m System
p P
0] 0]
A r r B
P Customer L Database
Data
Pros: Cons:

« Data transfer not immediate
e Systems may be out of sync
e Large amounts of data

© Copyright 2003 Gregor Hohpe, ThoughtWorks, Inc. 6

 Make all applications access a common
database

System System System
A B C
I I I
Customer
Data
Pros: Cons:
g B F | - Consistent Data e Integration of data,
B a | - Reporting not business functions
K | O e Difficult to find common
L e representation
E © Copyright 2003 Gregor Hohpe, ThoughtWorks, Inc.

' 90s: Remote Procedure Calls

* One application calls another directly to
perform a function.

« Data necessary for the call is passed
along. Results are returned to calling
application.

System Get Credit Score System
740
A B

Pros: Cons:
« Data exchanged only as o Works well only with small

needed number of systems
 Integration of business * Fragile (tight coupling)

function, not just data * Performance

© Copyright 2003 Gregor Hohpe, ThoughtWorks, Inc. 3

* Publish events to a bus or queue
 Allow multiple subscribers to a message

System

System System

Customer
Missed payment

Messag

ing Channel

Pros:

« Data exchanged only as
needed

 Integration of business
function, not just data

e Loose coupling, asynchron.

cons:
e Not familiar
o Difficult to test / debug

e Sometimes you need a
synchronous response

© Copyright 2003 Gregor Hohpe, ThoughtWorks, Inc.

Many Vendors Provide Messaging Tools

e “EAl Vendors”
- IBM WebSphere MQ | __o=] T | L=
o 2\ L@m
— WebMethods m. \\m
— SeeBeyond | ok
— CrossWorlds etc. GIz‘:;”gi;‘t‘i'\é's%ngl\lj%dglaer\:\tl’;gr

+ Java Messaging (JMS) osi2001)

 Microsoft .NET System.Messaging
« Asynchronous Web Services

We are looking for vendor-neutral, practical

design guidelines and best practices

i © Copyright 2003 Gregor Hohpe, ThoughtWorks, Inc. 10

What Do We Need to Make Messaging

1. Transport messages Application Application

2. Design messages f@

3. Route the message to
the proper destination

e
4_
4. Transform the message @

to the required format

Y 5. Produce and consume

Application

mMeSsSages

6. Manage and Test the
System

© Copyright 2003 Gregor Hohpe, ThoughtWorks, Inc. 11

What Do We Need to Make Messaging

1. Transport messages li>ChanneI Patterns
2. Design messages l::> Message Patterns

3. Route the message to l::> Routing Patterns
the proper destination

4. Transform the message @Transformation Patterns
to the required format

{ 5. Produce and consume =, Endpoint Patterns
messages

6. Manage and Test the li> Management Patterns
System

© Copyright 2003 Gregor Hohpe, ThoughtWorks, Inc. 12

he Integration Pattern Language

—> Channel Patterns [3£]| Transformation
— Message Channel Patterns
— Point-to-Point Channel — Data Enricher
— Publish Subscribe — Content Filter
Channel — Check Baggage
®, Message Patterns [wan] Epnoint Patterns
— Return Address — Polling Consumer
— Correlation Identifier — Event-Driven Consumer
E Routing Patterns — Messaging Mapper
. — Message Router @ Management Patterns
— Splitter — Message Store
— Aggregator — Test Message
— Resequencer
— Auction

© Copyright 2003 Gregor Hohpe, ThoughtWorks, Inc. 13

So What Does One of These Patterns

e Context

Warning:
* Problem If you have worked with
 Forces messaging, you are likely
« Solution to have used some of
_ these solutions.
e Picture
. Patterns are harvested
* Resulting Context from actual use, not
« Known Uses “invented”!
 Related Patterns We start simple, go into
. Example more depth later.

* |con (optional)

i © Copyright 2003 Gregor Hohpe, ThoughtWorks, Inc. 14

Channel Pattern: .

e Asynchronous, reliable communication

o Sender can send message even if receiver is not
available

o Sender considers message delivered as soon as
message is placed in channel

 The channel stores the message until the receiver
IS available

e Sender and receiver agree on a channel

Sender Receiver
Publisher E_’ %) —> Subscriber

Producer Message Channel Consumer

© Copyright 2003 Gregor Hohpe, ThoughtWorks, Inc. 15

Channel Pattern: .

« How can the caller be sure that only one receiver
will receive the document or perform the call ?
— A single recipient for a each message

— In case of multiple possible consumers, exactly one will
receive the message (“competing consumers”)

— Message Queue, Document / Command model
— E.g., MSMQ, IBM WebSphere MQ, JMS Queue

“sNew Message Channel
Order”

© Copyright 2003 Gregor Hohpe, ThoughtWorks, Inc.

16

Channel Pattern:

e How can the sender broadcast an event to all
Interested receivers?
— Multiple recipients for a single message
— Sender has no knowledge of recipients

— Message is stored in the channel until each recipient
consumed it

— Broadcast / Multicast, Event model
— E.g. TIBCO RendezVous, JMS Topic

I@ —> |) —>» I@ Multiple
Subscribers
“Address Message Channel N I@
Changed”

© Copyright 2003 Gregor Hohpe, ThoughtWorks, Inc.

17

Sender

Message Pattern:
- Return Address

“Reply to Request
Channel B”

= [¥ & (_ChamnelA) > [2—»
4—1[[[“ «HM)«IW«

Response

ta

« How does the receiver of a message know where
to send the reply message”?

— Loose coupling means the receiver may not know who
the sender is.

— Reply channel is usually different from request channel.

/

Receiver

Proc. Request,
Send Result to
Channel
Specified by
Return Addr.

e Sender includes a Return Address in the request
message. Receiver sends response message to

channel specified by Return Address.
© Copyright 2003 Gregor Hohpe, ThoughtWorks, Inc.

18

Inspect Corr.
ID of incoming
message to
associate with

Message Pattern:
. Correlation Identifier

orig.request
ig.requ 7

[~~~

Sender

Msg 1
—»t@

44—

Msg 3

(Corr. 2)

Msg 2

—+(Channel A ||
“{_ChannelB (] *

Msg 4

(Corr. 1

ta

 How does a sender that receives a reply message
know which request the reply belongs to?
— Asynchronous messages may arrive out of order
— Messages may undergo different processing steps

components

Can be
sequence of

Receiver

« Each reply message should contain a Correlation
Identifier, a unique identifier that indicates which

request message this reply is for.
© Copyright 2003 Gregor Hohpe, ThoughtWorks, Inc.

19

Routing Pattern: =
- Message Router =

« How can we decouple individual processing steps
so that messages can be passed to different
components depending on some conditions?

— Different channels depending on message content, run-
time environment (e.g. test vs. production), ...

— Do not want to burden sender with decision (decoupling)

Widget
g
I@ e ; Inventory
A \ Gadget
uNeW > @@@
Order” Message Inventory

Router

 Use a special component, a Message Router, to route
messages from one channel to a different channel.

© Copyright 2003 Gregor Hohpe, ThoughtWorks, Inc. 20

Routing Pattern: =

« How do we route a message to a dynamically
specified list of recipients?
— Want more control than Pub-Sub channel
— Want to determine recipients by message

List of
recipient > Iﬂ - A

addresses I
- fﬂ —»{ B |
<= |

C
Recipient List

Processor
- fﬂ —»{ D |

e Use a Recipient List to first compile a list of
Intended recipients and then deliver the message
to every recipient in the list.

— More control, (possibly) tighter coupling

Olop>]

© Copyright 2003 Gregor Hohpe, ThoughtWorks, Inc. 21

Routing Pattern:
- Splitter

processed in a different way?
— Treat each element independently

— Make efficient use of network resources

B et % %o

Splitter Order Order Order
“New ltem1 Item?2 Item 3
Order”

to one item.
© Copyright 2003 Gregor Hohpe, ThoughtWorks, Inc.

« How can we process a message Iif it contains
multiple elements, each of which may have to be

— Need to avoid missing or duplicate elements

=

>~—

Message
Router

H-» ooo

-

-

OO0
(I [[

 Use a Splitter to break out the composite message into a
series of individual messages, each containing data related

22

Routing Pattern: g
- Aggregator

« How do we combine the results of individual, but
related messages back into a single message”?
— Responses may be out of sequence
— Responses may be delayed

% % %[

ltem 1 Item 2 Item 3 Aggregator Validated
Order

 An Aggregator manages the reconciliation of
multiple, related messages into a single message
— Stateful component
— When do we send the aggregate message”?
— Walit for all responses - Take first best answer
— Wait for amount of time - Wait until criteria met
© Copyright 2003 Gregor Hohpe, ThoughtWorks, Inc. 23

Routing Pattern: j

 We need to send a message to a dynamic set of
recipients, and return a single message that
Incorporates the responses.

Ouote Auction
Pub-Sub Vendor A I[[[Il —_

—»
I@ Channel
— &+ |Vendor B|—>Im |
5

O
13 EH‘ D*S

Quote Aggregator

© Copyright 2003 Gregor Hohpe, ThoughtWorks, Inc. 24

Example:

order.

 Receive an order, get best offer for each
item from vendors, combine into validated

Auction
t
Pub-Sub »|Vendor A I[[[(n‘?f ©
Channel
(I »|VVendor Bh’[[[l] —

E+ o] Tl

New Sequencer Quote Request
Order for each item

P PRI

_ “Best” Quote
Validated Aggregator . . iem
Order

© Copyright 2003 Gregor Hohpe, ThoughtWorks,

>

|:||
-| D<o
O

Aggregator

Inc.

25

Example Continued:

* Only vendors on the preferred vendor list
get to bid on an item.

—”|Vendor B|—> —
—> H*Dﬂﬂl—V 1@’@’@—» .
New Sequencer Quote Request Vendor Cl

Recipient = 1[[[(|]3uote
List < »|Vendor A|—> —
EnﬂEher
D—»D

Order for each item Preferred
Vendor List

8) e)

“Best” Quote | Aggregator
Validated Aggregator Q ggreg

for each item
Order

i © Copyright 2003 Gregor Hohpe, ThoughtWorks, Inc. 26

ransformation Patterns

\/
X
7\

ey [0 Data Enricher
AR — How do we communicate with another

system if the message originator does not
have all the required data items available?

O0—o| Content Filter

— How do we deal with a large message when
we are interested only in a few data items?

D—'gﬂl Check Baggage

— How can we reduce the data volume of a
message sent across the network without
sacrificing information content?

i © Copyright 2003 Gregor Hohpe, ThoughtWorks, Inc.

27

Management Patterns @

4 « Message Store
| — How can we report I|:|"_J_> 1@_’_}’ I[[[Il
against message
information without ﬁ Message
disturbing the loosely fmfﬁfm Store
coupled and transient
nature of a
messaging system?

Test Message Test Message
i *+ Test Message Injector Separator

— How can we detect a ID > |-> pmcessorl.; e e |_’1E|

component that is

. - Test Test

aCtlver processing 1@T Message Result l’ﬁ
messages, but j 5

. > o) est Data
garbles outgoing - |I Verifier
messages due to an Test Data v
internal fault? Generator

Console

© Copyright 2003 Gregor Hohpe, ThoughtWorks, Inc. 28

In Summary...

We established a visual and verbal
language to describe integration solutions

 |Individual patterns can be combined to
describe larger solutions

 We need no fancy tools besides
PowerPoint (or paper and pencil)

 We stayed away from vendor jargon

« Each pattern describes trade-offs and
considerations not included in this
presentation

i © Copyright 2003 Gregor Hohpe, ThoughtWorks, Inc.

29

What Are These Patterns NOT?

« NOT a precise specification language
— (e.g., see UML Profile for EAI)

« NOT a visual programming environment
e NOT a new “methodology”

e NOT complete

 NOT fool-proof

« NOT a silver bullet

4 © Copyright 2003 Gregor Hohpe, ThoughtWorks, Inc.

30

If This Was Interesting...

Gregor Hohpe, ghohpe@thoughtworks.com
Visit www.ealipatterns.com:

— Lots of detall

— Bibliography, related papers

— Sign up for the mailing list

o Info@enterpriseintegrationpatterns.com

 EXpect a book to hit the shelves sometime later
this year: “Patterns of Enterprise Integration”

 More on patterns: www.hillside.net
e ThoughtWorks: www.thoughtworks.com

Thank You! =see

© Copyright 2003 Gregor Hohpe, ThoughtWorks, Inc. 31

