
Developing in a Service-oriented World

Gregor Hohpe, Google

W-JAX 2007

Developing in a 
Service-oriented World

Gregor Hohpe | Google

www.eaipatterns.com

Copyright 2007 Google, Inc2

Who's Gregor? 
• Distributed systems, enterprise integration, 

service-oriented architectures

• MQ, MSMQ, JMS, TIBCO, Web Services

• Write code every day. Share knowledge 

through patterns. 

Integration
Patterns
Microsoft Press

Enterprise

Integration 

Patterns
Addison-Wesley

SOA 

Experten-

wissen
dpunkt Verlag

Enterprise 

Solution 

Patterns
Microsoft Press

Best 

Software 

Writing I
APress

eaipatterns.com

• Patterns

• Articles

• Blog



Developing in a Service-oriented World

Gregor Hohpe, Google

W-JAX 2007

Copyright 2007 Google, Inc3

WebMethod

Cut

Copy 

Paste

WebMethod

Cut

Copy 

Paste

Could It Be So Easy?

• Buzzword compliant, but not a service-oriented 
architecture

• Synchronous call stack mentality

• No interface-implementation separation

Int MyMethod(String text)
{…}

WSDL

SOAP

WS-*

Copyright 2007 Google, Inc4

Advice for Aspiring SOA Developers

• Forget about SOAP

• Become good at PowerPoint

• Pay close attention to Starbucks

• Shred “Design Patterns” (or eBay it)

• PROLOG rocks

• Replace MDA with ADM



Developing in a Service-oriented World

Gregor Hohpe, Google

W-JAX 2007

PART I

How Did We Get Here?

Copyright 2007 Google, Inc6

SOA = ?

Same Old ArchitectureSame Old Architecture

Some Other ArchitectureSome Other Architecture

Stupid Overhyped AcronymStupid Overhyped Acronym

SOAP without the PSOAP without the P



Developing in a Service-oriented World

Gregor Hohpe, Google

W-JAX 2007

Copyright 2007 Google, Inc7

Service-Oriented Architecture

• Service

– Well-defined, Self-contained

– Independent of consumer context (mostly)

– Universally accessible without individual deployment

• Service-Oriented Architecture

– An architectural style

– A simple, document-oriented interaction model

– Loose(r) coupling

– Interface contracts, registry

– Functional assets reside in services, explicit

orchestration across services

Copyright 2007 Google, Inc8

Distributed Component Architectures

• Main driver: transparency to developer

– Remote code looks like local code

• The Distributed Object approach ignores:

– Latency (network, marshalling, applications)

– Disconnected or intermittently connected networks

– Lack of shared memory access (pointers, references)

– Partial failure and concurrency

– Independent variability between systems (coupling)



Developing in a Service-oriented World

Gregor Hohpe, Google

W-JAX 2007

Copyright 2007 Google, Inc9

Distributed Component Architectures

“Objects that interact in a distributed system need 
to be dealt with in ways that are intrinsically 

different from objects that interact in a single 

address space.”

“Objects that interact in a distributed system need 
to be dealt with in ways that are intrinsically 

different from objects that interact in a single 

address space.”
-- Waldo et al, 1994

“95% transparent is not good enough. In fact, it is 

worse because it deceives developers.”

“95% transparent is not good enough. In fact, it is 

worse because it deceives developers.”
-- Werner Vogels

“The first law of distributed objects: Don’t distribute 

your objects”

“The first law of distributed objects: Don’t distribute 

your objects”
-- Martin Fowler

Copyright 2007 Google, Inc1
0

Service Oriented Integration

• Simplicity of interaction.

• No notion of inheritance, polymorphism, call 
stack, references etc.

• No lifecycle control. Service provider manages 
instances / allocations internally to suit its 
needs.

• Pass fewer, more self-contained documents. A 
tree structure (e.g., XML) is well suited for this.

• More amenable to asynchronous interaction.

Defining Characteristics



Developing in a Service-oriented World

Gregor Hohpe, Google

W-JAX 2007

Copyright 2007 Google, Inc1
1

Considerations

Service Oriented Integration

• Progress through Regress?

• Is the simplified interaction model sufficient? 
(WS-*)

• Are the contracts expressive enough?

• Are we getting it right this time around?

• When is SOA not appropriate?

PART II

What Now?



Developing in a Service-oriented World

Gregor Hohpe, Google

W-JAX 2007

Copyright 2007 Google, Inc1
3

The Human Side of Service-Orientation

• Architectural style is based on patterns and 
intent, not technology selection.

• SOAP vs. Binary is only a very small part of the 
SOA puzzle.

• Conversation models, asynchrony, document-
orientation, granularity, decoupling, 
management, etc. are much more important.

Copyright 2007 Google, Inc1
4

The Human Side of Service-Orientation

• Loose coupling means shared architectural 
vision and intent are critical.

• SOA is primarily an agreement on what not to 
do.

• Your compiler can’t tell you if you violated SOA 
principles.

• In the near term, this means documentation. 
Yes, PowerPoint!



Developing in a Service-oriented World

Gregor Hohpe, Google

W-JAX 2007

Copyright 2007 Google, Inc1
5

SOA on Architect's Napkin

Application

Endpoint

Orchestration

Application
Transform

Rules

Conversation

Message
Document

Copyright 2007 Google, Inc1
6

SOA on Developer's Napkin

Application

Endpoint

Orchestration

Application
Transform

Rules

Conversation

Message
Document

Object-Document
Mapping

Process
Modeling

Event-based
Programming

Protocol
Design

Declarative
Programming



Developing in a Service-oriented World

Gregor Hohpe, Google

W-JAX 2007

Copyright 2007 Google, Inc1
7

New Programming Models in SOA

• Event-based, Asynchronous Programming

– Explicit state management

– Sequencing, timing uncertainty

• Declarative Programming

– Execution path chosen at run-time

– XSLT, Rules engines

• Object-Document Mapping

– Analogous to O-R mapping: subtle, but important

• Process Modeling

– Many concurrent, long-running instances

– No two-phase-commit style transactions 

Copyright 2007 Google, Inc1
8

“Doodleware” Only Limited Help

• For example

– Graphical process editors

– Graphical transformation editors

• We love pictures

• Programming in pictures tedious

– Scalability issues

– Diff, Merge mostly unsupported

• Often a thin veneer over a complex 
(or unfamiliar) programming paradigm “EAI Art”



Developing in a Service-oriented World

Gregor Hohpe, Google

W-JAX 2007

Copyright 2007 Google, Inc1
9

Understanding Technology
• Syntax

– Basic language mechanism

– Artefact of crude input devices

• Constructs

– "Vocabulary": Objects, Classes, Interfaces, Inheritance, etc.

– Easily explained but no guidance on good design

• Principles

– Separation of Concerns, Open-Closed, etc.

– Help evaluate a solution

• Patterns

– Null Object, Decorator, Model-View-Controller

– Concrete design guidance based on principles

Copyright 2007 Google, Inc2
0

Patterns – 10 Years After GoF

• “Mind sized” chunks of information 
(Ward Cunningham)

• Human-to-human communication

• Good solution to a common problem within a 
specific context

• Expresses intent (the “why” vs. the “how”)

• Observed from actual experience

• NOT:

– A firm rule –always a time when not to use

– Copy-paste

– Isolated. Part of a Pattern Language



Developing in a Service-oriented World

Gregor Hohpe, Google

W-JAX 2007

Copyright 2007 Google, Inc2
1

Why Revisit Patterns?

• New programming models bring new patterns.

• Patterns are expressed using the constructs of 

the underlying architectural style (e.g. OO, 
SOA).

• Patterns can help discover higher levels of 
abstraction.

• Ultimately some of these patterns can be 
implemented in the platform.

• This is usually an iterative process.

Copyright 2007 Google, Inc2
2

Focus on Interaction

• In the OO world interaction is essentially free

• Powerful structural mechanisms: inheritance, 

composition, aggregation

• In the SOA world more focus shifts to 
interaction. Structural composition mechanisms 
are limited.

"The lines are becoming boxes now.""The lines are becoming boxes now."

-- Ralf Westphal



Developing in a Service-oriented World

Gregor Hohpe, Google

W-JAX 2007

Copyright 2007 Google, Inc2
3

Thinking Asynchronously

Synchronous (Call Stack) Asynchronous (Pipeline)

Web Site
New Order

Order Mgmt

Inventory

Shipping

Confirm

Idle

Web Site

New Order

Order Mgmt

Inventory

Shipping

Ack

Ack

New Order

Ack

New Order

Copyright 2007 Google, Inc2
4

Conversations

• Series of related messages between parties

• Choreography (e.g. WS-CDL)

• Describing conversation state and rules

• Protocol design

Order

Invoice

Payment

Drinks

Internal State:

Waiting for 

Payment

Internal State:

Waiting for 

Payment

Conversation 

State

Conversation 

State

Internal State:

Processing 

Payment

Internal State:

Processing 

Payment

Internal State:

Making Drinks

Internal State:

Making Drinks



Developing in a Service-oriented World

Gregor Hohpe, Google

W-JAX 2007

Copyright 2007 Google, Inc2
5

Exception Handling

• “Starbucks does not use two-phase commit”

– Compensation

– Retry

– Write-off

• Throughput over latency

– “Wider bridges, not faster cars”

• Optimize for happy day scenario

Copyright 2007 Google, Inc2
6

Composability

"The ability to build new things from existing pieces."



Developing in a Service-oriented World

Gregor Hohpe, Google

W-JAX 2007

Copyright 2007 Google, Inc2
7

Composition Considerations

• Introduces a new layer into the system: the 
composition layer

• Deserves to be a 1st class citizen: 

– Language

– Tools

– Tests

“Great composers are few and far in between.”

-- Gregor's Ramblings

Copyright 2007 Google, Inc2
8

Bottom Up vs. Top Down

• Loosely coupled systems enable independent 
variability

• System can evolve locally without breaking

• Evolution can lead to surprises

• Therefore, extract accurate state of the system:

– Design-time analysis

– Run-time observation

• “Reverse” MDA



Developing in a Service-oriented World

Gregor Hohpe, Google

W-JAX 2007

Copyright 2007 Google, Inc2
9

Run-time Observation

• Component endpoints send 
status messages to a Control 

Bus

• Invisible to applications

• Central component collects 

publication and subscription 
data

• Map onto a Directed Graph 
metamodel

• Use AT&T GraphViz to layout 
a visual representation

AA
Channel X

Endpoint

BB

A pub XA pub X B sub XB sub X

Control Bus

TrackerTracker

RendererRenderer

ImageA B

A � X
X � B

X

Dependencies

Model

Mapper

Model

Mapper

Nodes: A, B
Edges: X(A->B)

Directed

Graph

GraphVizGraphVizValidationValidation

Errors /

Warnings !

Copyright 2007 Google, Inc3
0

Visualization – Example Input



Developing in a Service-oriented World

Gregor Hohpe, Google

W-JAX 2007

Copyright 2007 Google, Inc3
1

Visualization – Example Output

Copyright 2007 Google, Inc3
2

Model Validation

CustomerCustomer

LoggerLogger

order

Channel

orders

Channel



Developing in a Service-oriented World

Gregor Hohpe, Google

W-JAX 2007

Copyright 2007 Google, Inc3
3

Domain-Specific Languages

• Finding generic languages to support these 
programming models is hard

• It also makes the languages complex and the 
learning curve steep (see XSLT)

• “Language Workbenches” may help us create 
our smaller domain-specific languages

• Intentional Programming

– JetBrains Meta Programming System (MPS)

– Visual Studio 2005

– See article on http://www.martinfowler.com/

Copyright 2007 Google, Inc3
4

In Summary

• SOA brings new and unfamiliar:

– Architectural Styles

– Programming Models

– Best Practices

– Patterns

– Testing Approaches

– Management Approaches

• The collective learning cycle will take some time

• The vendors and specs are sometimes ahead 
(or amiss) of the real issues



Developing in a Service-oriented World

Gregor Hohpe, Google

W-JAX 2007

Copyright 2007 Google, Inc3
5

Enterprise Integration Patterns

• Language of 65 patterns

• Consistent vocabulary 
and notation

• Focuses on asynchronous 

messaging

• Many more patterns 

to harvest:

– Conversations

– Orchestrations

– Error Handling

– Complex Transformations

– Rules Engines

• www.EnterpriseIntegrationPatterns.com


