
Enterprise Integration Patterns

Gregor Hohpe | www.eaipatterns.com

www.EnterpriseIntegrationPatterns.com© 2015 Gregor Hohpe

Topics for Today

2

1. Me

2. The Book

3. Enterprise Integration

4. Messaging

5. Messaging Patterns

6. Patterns and Pattern Languages Revisited

7. Messaging Patterns in Action

8. Conversations

9. Conversation Patterns

10. Conclusion

Me

3

www.EnterpriseIntegrationPatterns.com© 2015 Gregor Hohpe

Bounced around a lot

5

Computer Science

Comp Science

Engineering Management

Diplom

Masters

Masters

Startup

Consulting

Software

Corporate IT

www.EnterpriseIntegrationPatterns.com© 2015 Gregor Hohpe

Around the world in 20 years

6

www.EnterpriseIntegrationPatterns.com© 2015 Gregor Hohpe 7

eaipatterns.com

/ramblings

The Book

8

www.EnterpriseIntegrationPatterns.com© 2015 Gregor Hohpe

http://hillside.net/

plop/plop2002/

proceedings.html

“Enterprise Integration Patterns”

G. Hohpe

“Patterns of System Integration with

Enterprise Messaging”

B. Woolf, K. Brown

9

http://hillside.net/plop/plop2002/proceedings.html

www.EnterpriseIntegrationPatterns.com© 2015 Gregor Hohpe 10

OOPSLA 2003

 185,000 Words

 730 pages

 65,000 copies sold

Languages

 English

 Russian

 Chinese Traditional

 Korean

www.eaipatterns.com

 Sketches, summaries under
Creative Commons

 Visio, Omnigraffle stencils

http://www.eaipatterns.com/

Enterprise

Integration

14

www.EnterpriseIntegrationPatterns.com© 2015 Gregor Hohpe

Isolated Systems

Unified Access

15

www.EnterpriseIntegrationPatterns.com© 2015 Gregor Hohpe

Why This Is Still Interesting

• Large-scale and complex

• Far-reaching implications, business critical

• Distributed, heterogeneous environment

• Applications not designed to be connected

• Semantic Dissonance

• Not object-oriented

• Variety of skills and technologies

• Corporate politics

Plus

• Distributed applications are the norm

• Increased customer expectations

• REST services, simpler protocols

16

www.EnterpriseIntegrationPatterns.com© 2015 Gregor Hohpe

70s: Batch Data Exchange

Export information into a common file format, read into the target

system

Example: COBOL Flat files

System

A

System

B

E

x

p

o

r

t

I

m

p

o

r

tCustomer

Data
Database

• Good physical decoupling

• Language and system

independent

• Data transfer not immediate

• Systems may be out of sync

• Large amounts of data

Pros: Cons:

17

www.EnterpriseIntegrationPatterns.com© 2015 Gregor Hohpe

80s: Central Database

All applications access a common database

System

A

System

B

Customer

Data

System

C

• Consistent Data

• Reporting

• Transactional guarantees

• Integration of data,

not business functions

• Difficult to find common

representation

Pros: Cons:

18

www.EnterpriseIntegrationPatterns.com© 2015 Gregor Hohpe

Get Credit Score

90s: Remote Procedure Calls

One application calls another directly to perform a function.

Data necessary for the call is passed along. Results are returned to

calling application.

System

A

System

B
740

• Data exchanged only as needed

• Integration of business

function, not just data

• Works well only with small

number of systems

• Fragile (tight coupling)

• Performance

Pros: Cons:

19

Messaging

20

www.EnterpriseIntegrationPatterns.com© 2015 Gregor Hohpe

Asynchronous Messaging Style

Systems send messages across Channels

Channels have logical (location-indep.)

addresses

Placing a message into the Channel is quick

(“fire-and-forget”)

The Channel queues messages until the

receiving application is ready

ReceiverSender

Message
Channel

(Queue)

Simplified

Interaction

Temporal

Decoupling

Location

Decoupling

An "honest" architectural style that does not try to deny

the limitations of the underlying medium.

21

www.EnterpriseIntegrationPatterns.com© 2015 Gregor Hohpe

Why Asynchronous Messaging?

Asynchrony

Sender does not have to wait for receiver to process message

Temporal decoupling

Throttling

Receiver can consume messages at its own pace

Processing units can be tuned independently

Can be Reliable Over Unreliable Networks

Messages can transparently be re-sent until delivered

Think cell phones – intermittent and unreliable

Insertion of intermediaries (Pipes-and-Filters)

Composability

Transformation, routing etc.

Throughput over latency

“Wider bridges not faster cars”

22

www.EnterpriseIntegrationPatterns.com© 2015 Gregor Hohpe

A New “Tower of Babel”

completeness of vision

a
b
ili

ty
 t

o
 e

x
e
c
u
te

Gartner “Magic Quadrant” for

Integration and Middleware 2001

23

www.EnterpriseIntegrationPatterns.com© 2015 Gregor Hohpe 24

Messaging

Patterns

25

www.EnterpriseIntegrationPatterns.com© 2015 Gregor Hohpe

Messaging Pattern Language

1. Transport messages ApplicationApplication

2. Design messages

3. Route the message to

the proper destination

Application

4. Transform the message

to the required format

5. Produce and consume

messages

ApplicationApplication

Application

6. Manage and Test the

System

26

www.EnterpriseIntegrationPatterns.com© 2015 Gregor Hohpe

Messaging Pattern Language

1. Transport messages

3. Route the message to

the proper destination

4. Transform the message

to the required format

5. Produce and consume

messages

6. Manage and Test the

System

Channel Patterns

Routing Patterns

Transformation Patterns

Endpoint Patterns

Management Patterns

2. Design messages Message Patterns

Application

27

www.EnterpriseIntegrationPatterns.com© 2015 Gregor Hohpe

Visual Language

Content-Based Router

Message Filter

Recipient List

Splitter

Aggregator

Resequencer

Routing Slip (Itinerary)

Process Manager

29

www.EnterpriseIntegrationPatterns.com© 2015 Gregor Hohpe

Composing Patterns

30

Receive an order

Get best offer for each item from vendors

Combine into validated order.

SplitterNew

Order

AggregatorValidated

Order

Quote Request

for each item

“Best” Quote

for each item

Vendor A

Vendor B

Pub-Sub

Channel

Quote

Aggregator

Vendor C

Scatter-Gather

Patterns &

Pattern

Languages

31

www.EnterpriseIntegrationPatterns.com© 2015 Gregor Hohpe

Patterns Revisited

• Shows a good solution to a common

problem within a specific context

• “Mind sized” chunks of information

(Ward Cunningham)

• Expresses intent (the “why” vs. the “how”)

• Observed from actual experience

NOT:

• A firm rule – always a time when not to use

• Copy-paste code snippet – just example

• Isolated – Part of a Pattern Language

32

www.EnterpriseIntegrationPatterns.com© 2015 Gregor Hohpe

Patterns and Architecture Styles

Patterns exist at different levels

• Idioms (usually language specific)

• Design (usually system specific)

• Architecture

Patterns “belong” to an architectural style

• OO Patterns ≠ Messaging Patterns

• Architectural style provides vocabulary to express

patterns

• Different vocabulary, composition rules, semantic

interpretation

Integration uses a variety of architectural styles

• Messaging (pipes-and-filters), Data transformation

(functional), endpoints (object-oriented), conversations

(state machine)

33

www.EnterpriseIntegrationPatterns.com© 2015 Gregor Hohpe

Christopher Alexander’s Patterns

BED ALCOVE

Design problem

Bedrooms make no sense.

Forces

First, the bed in a bedroom creates awkward

spaces around it: dressing, working, watching television,

sitting, are all rather foreign to the side spaces left over

around a bed. (...)

Second, the bed itself seems more comfortable in a space

that is adjusted to it.

Solution

Don't put single beds in empty rooms called bedrooms, but

instead put individual bed alcoves off rooms with other

nonsleeping functions, so the bed itself becomes a tiny private

haven.

Related Patterns

Communal Sleeping, Marriage Bed

Ceiling Height Variety, Half-open Room, Thick Walls

34

www.EnterpriseIntegrationPatterns.com© 2015 Gregor Hohpe

Pattern Structure

Name

Icon

Context

Problem

Forces

Sketch

Solution

Results

Next

Examples

35

www.EnterpriseIntegrationPatterns.com© 2015 Gregor Hohpe

Pattern Language

Patterns don’t live in isolation

• Pattern Compounds

• Pattern Sequences

• Pattern Collections

• Pattern Languages

36

Patterns are “harvested”

• Story behind the scenes for GoF

• How patterns are refined and applied

www.EnterpriseIntegrationPatterns.com© 2015 Gregor Hohpe

Pattern Language: Message Flow

37

www.EnterpriseIntegrationPatterns.com© 2015 Gregor Hohpe

Pattern Language: Root Patterns

38

Messaging

Chapter 1:

Integration

Styles

Chapter 2:

Messaging

Systems

Message
Message

Channel

Pipes and

Filters

Message

Router

Message

Translator

Message

Endpoint

Chapter 4:

Message

Construction

Chapter 3:

Messaging

Channels

Chapter 5:

Message

Routing

Chapter 6:

Message

Transform.

Chapter 7:

Messaging

Endpoints

Chapter 8:

Systems

Management

www.EnterpriseIntegrationPatterns.com© 2015 Gregor Hohpe

Pattern Language: Alternatives

39

Content-Based Router

Message Filter

Recipient List

Splitter

Aggregator

Resequencer

Compos. Msg. Processor

Scatter-Gather

Routing Slip

Process Manager

Simple

Composed Parallel

Sequential

Split Message

Broadcast Message

Predetermined, Linear

Any Path

Process one msg at a

time (stateless)

Process multiple

msgs at a time (stateful)

Less msgs out

Same number

of msgs out

Exactly One

Zero or One

Parallel

Sequential

Single msg out

Mult. msgs out

www.EnterpriseIntegrationPatterns.com© 2015 Gregor Hohpe

Pattern “Sketches”: The Icons / Gregorgrams

•Biggest step was having a “box in the middle”

•Pipes-and-filters = Simplest form of Composability

•Some icons missing

•Endpoint patterns compose differently

40

A B A B

AuthenticateDecrypt De-Dup

Transactional Polling

www.EnterpriseIntegrationPatterns.com© 2015 Gregor Hohpe

Pattern “Sketches”: Enriching the Vocabulary

41

Event-Driven

Consumer

Polling

Consumer
Puller Pusher

DriverPool / Buffer

http://www.EnterpriseIntegrationPatterns/ramblings/80_syncorswim.html

Synchronous

Asynchronous

Endpoints Connecting Elements

Source Buffer Sink

www.EnterpriseIntegrationPatterns.com© 2015 Gregor Hohpe

Fun with Pattern Icons

42

@bibryam

www.EnterpriseIntegrationPatterns.com© 2015 Gregor Hohpe

Richer Pattern Relationships

43

Source: Logica

www.EnterpriseIntegrationPatterns.com© 2015 Gregor Hohpe

Richer Pattern Relationships

44

Source: Logica

www.EnterpriseIntegrationPatterns.com© 2015 Gregor Hohpe

Patterns Hands-on

45

Messaging

Patterns

in Action

46

www.EnterpriseIntegrationPatterns.com© 2015 Gregor Hohpe

Pattern: Request-Reply

Service Provider and Consumer (similar to RPC)

Channels are unidirectional

Two asynchronous Point-To-Point Channels

Separate request and reply messages

47

Request Channel

Reply

Request

Reply Channel

ProviderConsumer

www.EnterpriseIntegrationPatterns.com© 2015 Gregor Hohpe

Multiple Consumers

Each consumer has its own reply queue

How does the provider know where to send the reply?

 Could send to all consumers very inefficient

 Hard code violates principle of context-free service

48

Consumer

1

Replies

Requests

Consumer

2

?

Requests

Request Channel

Reply Channel 1

Reply Channel 2

Provider

www.EnterpriseIntegrationPatterns.com© 2015 Gregor Hohpe

Pattern: Return Address

Consumer specifies Return Address (reply channel) in the

request message

Service provider sends reply message to specified channel

49

Consumer

1

RepliesConsumer

2

Request Channel

Reply Channel 1

Reply Channel 2

Reply

Channel 1

Reply

Channel 2 Provider

www.EnterpriseIntegrationPatterns.com© 2015 Gregor Hohpe

Multiple Service Providers

Request message can be consumed by more than one

service provider

Point-to-Point Channel supports Competing Consumers,

where only one service receives each request message

Channel queues up pending requests

50

Consumer

Provider 1

Provider 2
Request Channel

Reply Channel

www.EnterpriseIntegrationPatterns.com© 2015 Gregor Hohpe

Multiple Service Providers

Reply messages get out of

sequence

How to match request and

reply messages?

 Only send one request at a time

 very inefficient

 Rely on natural order

 bad assumption

51

Reply 1

Service 1

(slow)

Request 1

Service 2

(fast)
Consumer

Request 2

Reply 2

www.EnterpriseIntegrationPatterns.com© 2015 Gregor Hohpe

Pattern: Correlation Identifier

Equip each message with a unique Correlation Identifier

 Message ID (simple, but has limitations)

 GUID (Globally Unique ID)

 Business key (e.g. Order ID)

Provider copies the ID to the reply message

Consumer can match request and response

Insert a SmartProxy if provider does not support this
52

Message

Identifier 1

2

Provider 1

Provider 2
Request Channel

Response Channel

1 2

12 12

1 2

12

Correlation

Identifier

Correlate

Request &

Reply

Consumer

www.EnterpriseIntegrationPatterns.com© 2015 Gregor Hohpe

Pattern: Pipes-And-Filters

Connect individual processing steps (filters) with message

channels (pipes)

 Pipes decouple sender and receiver

 Participants are unaware of intermediaries

 Compose patterns into larger solutions

53

Incoming

Order

AuthenticateDecrypt De-Dup

‘Clean’

Order

Filter Filter Filter

PipePipePipe Pipe

www.EnterpriseIntegrationPatterns.com© 2015 Gregor Hohpe

Multiple Specialized Providers

Each provider can only handle specific type of message

Route request to the “appropriate” provider based on the

content of the request message

 Do not want to burden sender with decision (decoupling)

 Letting each consumer “pick out” desired messages requires

distributed coordination

54

Order

Entry

Widget Inv.

Gadget Inv.

?

Order

Messages

www.EnterpriseIntegrationPatterns.com© 2015 Gregor Hohpe

Pattern: Content-Based Router

Insert a Content-Based Router

Message routers forward incoming messages to different

output channels without changing message content.

Mostly stateless, but can be stateful (e.g. de-duper)

55

Widget Inv.

Gadget Inv.

Order

Entry

Content-

Based

Router

Order

Messages

www.EnterpriseIntegrationPatterns.com© 2015 Gregor Hohpe

Composite Message

How can we process a message if it contains multiple

elements, each of which may have to be processed in a

different way?

 Treat each element independently

 Need to avoid missing or duplicate elements

 Make efficient use of network resources

56

Order

Entry

Order

Message

Widget Inv.

Gadget Inv.

?

www.EnterpriseIntegrationPatterns.com© 2015 Gregor Hohpe

Pattern: Splitter

Use a Splitter to break out the composite message into a

series of individual messages, each containing data related

to one item.

57

Order

Entry

Order

Message

Order

Item 1

Order

Item 2
Splitter

?

Widget Inv.

Gadget Inv.

www.EnterpriseIntegrationPatterns.com© 2015 Gregor Hohpe

Composite: Splitter & Router

Use a Splitter to break out the composite message into a

series of individual messages, each containing data related

to one item.

Then use a Content-Based Router to route the individual

messages to the proper destination

58

Order

Entry

Order

Message

Order

Item 1

Order

Item 2
Splitter

Widget Inv.

Gadget Inv.

Order

Item 1

Order

Item 2

Router

www.EnterpriseIntegrationPatterns.com© 2015 Gregor Hohpe
59

Producing a Single Response

How to combine the results of individual, but related

messages so that they can be processed as a whole?

 Messages out of order

 Message delayed

 Which messages are related?

 Avoid separate channel for each system

Widget Inv.

Gadget Inv.

Order

Item 1

Order

Item 2

Response 1

Response 2

?

Confirmed

Order

Billing
Order

Entry

Order

Message

Order

Item 1

Order

Item 2
Splitter

Widget Inv.

Gadget Inv.

Order

Item 1

Order

Item 2

www.EnterpriseIntegrationPatterns.com© 2015 Gregor Hohpe

Pattern: Aggregator

Use a stateful filter, an Aggregator, to collect and store

individual messages until a complete set of related

messages has been received.

 Aggregator publishes a single message distilled from the individual

messages.

60

Widget Inv.

Gadget Inv.

Order

Item 1

Order

Item 2

Response 1

Response 2

Confirmed

Order

Billing

Aggregator

www.EnterpriseIntegrationPatterns.com© 2015 Gregor Hohpe

Aggregator Design Decisions

Correlation: Which incoming messages belong together?

Completeness Condition: When to publish the result message?

 Wait for all

 Time out (absolute, incremental)

 First best

Aggregation Algorithm: How to combine the received messages?

 Single best answer

 Condense data (e.g., average)

61

 Time box with override

 External event

 Concatenate data for later analysis

www.EnterpriseIntegrationPatterns.com© 2015 Gregor Hohpe

Pattern: Scatter-Gather

Send a message to a dynamic set of recipients, and return a single

message that incorporates the responses.

62

Quote

Request

“Best”

Quote

Vendor A

Vendor B

Pub-Sub

Channel

Quote

Aggregator

Vendor C

Scatter-Gather

www.EnterpriseIntegrationPatterns.com© 2015 Gregor Hohpe

Composing Patterns

Receive an order, get best offer for each item from vendors, combine

into validated order.

63

SplitterNew

Order

AggregatorValidated

Order

Quote Request

for each item

“Best” Quote

for each item

Vendor A

Vendor B

Pub-Sub

Channel

Quote

Aggregator

Vendor C

Scatter-Gather

www.EnterpriseIntegrationPatterns.com© 2015 Gregor Hohpe 64

Pattern: Control Bus

Configuration

Heartbeat

Test messages

Exceptions / logging

Statistics / Quality-of-Service (QoS)

Live console

Application Message Flow

Control Bus

Management

Console

www.EnterpriseIntegrationPatterns.com© 2015 Gregor Hohpe 65

Pattern: Test Message

Inject application specific test messages

Extract result from regular message flow

Compare result against predefine (computed) result

Processor

Test

Message

Appl.

Msg. 1

Appl.

Msg. 2

Test Message

Injector

Test Message

Separator

Test Data

Generator

Test Data

Verifier

Test

Result

Control Bus

Appl.

Msg. 1

Appl.

Msg. 2

Management Console

Messaging

Patterns

Today

66

www.EnterpriseIntegrationPatterns.com© 2015 Gregor Hohpe

Google Cloud Pub-Sub

Cloud

Pub/Sub

Publisher

C

Publisher

B

Topic CTopic B

Subscription YC

Subscriber

Y

Subscriber

Z

Subscription ZC

Message 3

Message 3 Message 3

Subscription B

Message 2

Subscriber

B1

Subscriber

B2

Message 2

Publish-SubscribePoint-to-Point

Publish-Subscribe

Channel

Competing

Consumers
Message

Expiration

Durable

Subscriber Polling

Consumer

Transactional

Client

67

www.EnterpriseIntegrationPatterns.com© 2015 Gregor Hohpe

Serverless

68

www.EnterpriseIntegrationPatterns.com© 2015 Gregor Hohpe

Reactive

69

Extending

Messaging

Patterns

70

www.EnterpriseIntegrationPatterns.com© 2015 Gregor Hohpe

Expanding the Integration Patterns

Pattern

Platform

Tools

Project

Pattern

Family

Deepen

Other

Patterns?
Broaden

71

www.EnterpriseIntegrationPatterns.com© 2015 Gregor Hohpe

Patterns as Domain Language

72

• Messaging toolkit

• Compose solutions from the command line

• Raised level of abstraction

call Customer orderChannel

call Enricher orderChannel orderEnrichedChannel

call Splitter orderEnrichedChannel itemChannel "/Order/Item"

call Router itemChannel coldBevChannel "Item = 'FRAPPUCINO'" hotBevChannel

call Logger coldBevChannel

call Logger hotBevChannel

Splitter RouterEnricher Logger

Logger

Customer

order

Channel

orderEnriched

Channel

item

Channel

coldBevChannel

hotBevChannel

www.EnterpriseIntegrationPatterns.com© 2015 Gregor Hohpe

Patterns

• Human communication

• Fuzzy

• Design tool

• Platform independent

Components

• System Communication

• Precise

• Executable

• Platform dependent

 Simple composability: Pipes and Filters

 Easy formalization: Input ports, Output ports

 Other domain languages: XSLT, XPath

Input Port Output Port

73

www.EnterpriseIntegrationPatterns.com© 2015 Gregor Hohpe

Improving Projection – Variability Points

Aggregator

Element ID

Input Channel

Output Channel

Correlation Function

Completeness

Condition

Aggregation Algorithm

74

Conversations

75

www.EnterpriseIntegrationPatterns.com© 2015 Gregor Hohpe

Request-Reply

Simplest conversation

Single Conversation state: waiting for reply, complete

Gets more complicated once error conditions considered

76

Request

Channel

Reply

ChannelRequestor Replier

Awaiting
Answer

Conversation

State Chart

www.EnterpriseIntegrationPatterns.com© 2015 Gregor Hohpe

Request-Reply with Retry

Sender can repeat request n times

Provider has to be idempotent

Receiver also has to be idempotent

Example: RosettaNet Implementation Framework (RNIF)

Consumer Provider

Request

Response

Request (Resend)
∆t Awaiting

Answer

Conversation
State

[timeout]

[response] [yes]

FailedSuccess

max
retry?

77

www.EnterpriseIntegrationPatterns.com© 2015 Gregor Hohpe

Enterprise Integration or Messaging Patterns?

Enterprise
Integration

Messaging

78

www.EnterpriseIntegrationPatterns.com© 2015 Gregor Hohpe

Enterprise Integration or Messaging Patterns?

Enterprise
Integration

Messaging Conversations Processes Events

79

www.EnterpriseIntegrationPatterns.com© 2015 Gregor Hohpe

Messaging

Flow of messages through processing nodes

• Stateless -> scaleable, decoupled

• Error handling?

• Complex interactions (no guarantees)

Test Message Splitter

Enricher

Translator

Aggregator

80

www.EnterpriseIntegrationPatterns.com© 2015 Gregor Hohpe

Conversations

• Each conversation corresponds to one process instance

• Each participant has a (potentially different) process definition

81

Order

Invoice

Payment

Drinks

Conversation

State

Internal State:

Processing

Payment

Internal State:

Waiting for

Payment

Internal State:

Making Drinks

www.EnterpriseIntegrationPatterns.com© 2015 Gregor Hohpe

Example: Subscriptions

Publish-Subscribe Channel

• Follows the message

• Multiple receivers

• One-way

• Deals with transport issues

• Follows time

• Single receiver

• Two-way

• Deals with state / resources

82

Publisher
Subscriber

Subscriber

Subscriber

Subscribe

Notify

Notify
Notify

Subscriber Provider

…

How can the sender broadcast an event to all

interested receivers?

How can one participant receive information from

another participant if that information cannot

easily be packaged into a single message?

Subscribe-Notify

Conversation

Patterns

83

www.EnterpriseIntegrationPatterns.com© 2015 Gregor Hohpe

Challenges: Describing Conversations

• Sequence Diagrams (UML 1.x) only show one instance, not the rules

of interaction

• Sequence Diagrams (UML 2.0) more powerful, but non-intuitive

notation

• WS-CDL pretty much died.

• WS-BPEL too verbose and technical, looking from participant

perspective

• Temporal Logic expressive, but not good for sketch

• BPMN probably best choice, but tough to see the essence.

Dynamic views are much tougher for the brain to process as it

requires a translation from a static image to a dynamic process.

84

www.EnterpriseIntegrationPatterns.com© 2015 Gregor Hohpe

Conversation Sketches

• Prefer a sketch with loose semantics that highlights the essence

• Use BPMN as implementation example

85

Participants

MessagesFlow

Request

Lease

Requestor Provider

Renew
Δt

Lease (Renewed)

Annotations

www.EnterpriseIntegrationPatterns.com© 2015 Gregor Hohpe

Lookup (Broadcast)

Message

Available

Available

De-Junking the Notation

86

Initiator Providers

Choose

Provider
1

Provider
2

Provider
3

Pub-Sub

Request

1

2

Consider

3 Respond
4

5 Interact

Focus on messages

Named participants

Top-down timeline

Simpler graphics

Focus on Actions

Sequence Numbers

www.EnterpriseIntegrationPatterns.com© 2015 Gregor Hohpe

Conversation Pattern Language

87

Discovery Basic Conversations Resource Management

Setting Up Participants Application-level

?

!

Initiation Intermediaries Ensuring Consistency

www.EnterpriseIntegrationPatterns.com© 2015 Gregor Hohpe

Conversation Pattern Language

88

?

!

Discovery Basic Conversations Resource Management

• Dynamic Discovery

• Advertise Availability

• Consult Directory

• Referral

• Leader Election

• Fire-and-Forget

• Asynchronous Req-Resp

• Req-Resp with Retry

• Polling

• Subscribe-Notify

• Quick Acknowledgment

• Incremental State

• Lease

• Renewal reminder

Initiation Intermediaries Ensuring Consistency

• Three-way Handshake

• Acquire Token First

• Rotate Tokens

• Verify Identity

• User Grants Access

• Proxy

• Relay

• Load Balancer

• Scatter Gather

• Ignore Error

• Compensating Action

• Tentative Operation

• Coordinated Agreement

www.EnterpriseIntegrationPatterns.com© 2015 Gregor Hohpe

Point-to-point communication requires knowledge of the conversation

partner (or channel).

Late binding between a participants lowers the location coupling.

Discovery may be on the critical path to establishing a conversation.

Even in the presence of a central lookup service, a new participant has to

first establish a connection to the lookup service.

How can a conversation initiator

find a partner when it has no

knowledge whatsoever about

available partners?

89

www.EnterpriseIntegrationPatterns.com© 2015 Gregor Hohpe

Dynamic Discovery

1. Broadcast Lookup request

2. Interested providers send Available responses

3. Requestor initiates interaction with chosen provider

Examples: DHCP, TIBCO Repository discovery

Lookup (Broadcast)

Message

Available

Available

Initiator Providers

90

www.EnterpriseIntegrationPatterns.com© 2015 Gregor Hohpe

Central services for discovery are bound to get out of sync with reality.

Centralized administration may result in a single point of failure.

Dynamic Discovery can flood the network with requests.

The number of available providers is often small compared to the number

of initiated conversations.

How can a participant let others know

that it is available?

91

www.EnterpriseIntegrationPatterns.com© 2015 Gregor Hohpe

Advertise Availability

Directory may store additional metadata about the service

"Match making based on"

Unique Identifiers

Interface Definition / Type

Attributes

Keyword match

Message

Initiator Providers

Available (Broadcast)

Available (Broadcast)

Available (Broadcast)

Available (Broadcast)

92

www.EnterpriseIntegrationPatterns.com© 2015 Gregor Hohpe

Late binding between participants lowers the location coupling.

Many networks do not route broadcast packets beyond the local network.

Often centralized administration is involved in setting up a new service.

How can a conversation initiator find a

partner across a large network without

flooding the network with requests?

93

www.EnterpriseIntegrationPatterns.com© 2015 Gregor Hohpe

Consult Directory

Directory may store additional metadata about the service

"Match making based on"

Unique Identifiers, Interface Definition / Type, Attributes

Example: UDDI Directory, DNS

Message

Initiator Registry Providers

Lookup

Reference

Register

Register

94

www.EnterpriseIntegrationPatterns.com© 2015 Gregor Hohpe

A participant may be required to interact with the same partner that

another participant is already interacting with.

Directories are generally context free, i.e. they do not keep track of

existing conversations and when assigning an initiator to a partner.

Some participants may not want to be "discovered". However, "friends of

friends" are allowed to interact with them.

The choice of conversation partner may

depend on the context of a conversation or

may change over time.

How can an initiator discover the right

conversation partner?

95

www.EnterpriseIntegrationPatterns.com© 2015 Gregor Hohpe

Referral

Consult Directory is a specialized case of Referral

Requires addressability, i.e. to embed addresses in messages

Example: HTTP 302

Request

Message

Referral

Initiator Referrer Referral

96

www.EnterpriseIntegrationPatterns.com© 2015 Gregor Hohpe

Multi-Party Conversations: Intermediaries

97

Intermediaries Connectors

CoordinatorsPeer-to-peer

www.EnterpriseIntegrationPatterns.com© 2015 Gregor Hohpe

Proxy

How can a participant communicate with a partner that is not

visible or not reachable?

Initiator can hide identity using a Proxy

Proxy can monitor conversations

Proxy may need to be stateful for two-way conversations

Proxy can become a bottleneck

Message

Message

Initiator Proxy

Message

Message

Partner

98

www.EnterpriseIntegrationPatterns.com© 2015 Gregor Hohpe

Relay

How can participants engage in a two-way communication when each

participant is limited to outbound requests?

High overhead when using Polling

All other conversations can be layer on top of Relay

Needs to be stateful

Example: Amazon SQS

Message

Initiator Relay

Inquiry

Message

Partner

99

www.EnterpriseIntegrationPatterns.com© 2015 Gregor Hohpe

Scatter-Gather (Aggregator)

How can a participant solicit responses from a number of participants

without connecting to all of them

Widespread business model, e.g. “Aggregators”

Request

Response

Requestor Scatter-Gather

Request

Response

Providers

Request

Response

100

www.EnterpriseIntegrationPatterns.com© 2015 Gregor Hohpe

Renewal Confirm

Lease

(Renew Interval)

Resource Management

“Lease” model

Heartbeat / keep-alive

Subscriber has to renew actively

Example: Jini

“Magazine Model”

Subscriber can be simple

Provider has to manage state for

each subscriber

Register

Renew Interest

Automatic Expiration

Renewal Request

Register

Renewal Request

Subscriber Provider

ProviderSubscriber

∆t

∆t

101

www.EnterpriseIntegrationPatterns.com© 2015 Gregor Hohpe

REST Conversations

• Simpler transport protocols are more likely to hold conversations

• Loose coupling generates conversations: discovery, negotiation

• HTTP has built-in conversation patterns, e.g. 302

102

201 Created
Location: http://starbucks.example.org/order/1234
Content-Type: application/xml

<order xmlns="http://starbucks.example.org">
<drink>latte</drink>
<cost>3.0</cost>
<next xmlns=http://example.org/state-machine

rel="http://starbucks.example.org/payment"
uri=" http://starbucks.example.org/payment/order/1234“
type="application/xml"/>

</order>

Pautasso et al:

Modeling RESTful Conversations with Extended BPMN Choreography Diagrams

http://example.org/state-machine

Conclusion

www.EnterpriseIntegrationPatterns.com© 2015 Gregor Hohpe

Conclusions

• Enterprise Integrations is more than messaging

• Enterprise Integration needs multiple pattern languages

• Good patterns languages are timeless, but difficult to make

• A good notation is a critical element of a pattern language

• Follow evolution of conversation patterns

eaipatterns.com

@ghohpe, #eaipatterns

eaipatterns.com/patterns/conversation

104

