/\Software

Architecture Summit

Gregor Hohpe | www.ealipatterns.com

Enterprise Integration Patterns

Topics for Today

Me

The Book

Enterprise Integration

Messaging

Messaging Patterns

Patterns and Pattern Languages Revisited
Messaging Patterns in Action
Conversations

© 0 N O Ok DR

Conversation Patterns
10. Conclusion

© 2015 Gregor Hohpe www.EnterpriselntegrationPatterns.com

Bounced around a lot

Startup

.Netpulse

Consulting

EmE E

Deloitte
ThoughtWorks:

Software

Google

Corporate IT

Allianz @)

Masters Engineering Management

© 2015 Gregor Hohpe www.EnterpriselntegrationPatterns.com

Around the world in 20 years

© 2015 Gregor Hohpe www.EnterpriselntegrationPatterns.com

/e

ENTERPRISE
INTEGRATION “#

PATTERNS SOA- " Should Know
Expertenwissen et

?iim R

Methoden, Konaepte und Praws
GREGOR HOHPE = . WO St o' X/
B()BBY W()()ll - 5y . Z TR '

- -
Now N
- N\
; A J
TV .

97 Things Every

Wi

KYLE BROWN

Conrap E D'Cruz

MARTIN FOWLER

SEAN NEVILLE N dpuniterag

o e ==Y ErEEE———
_— eaipatterns.com 4w
/ramblings 1

)

N

Forewords by John Crupi and Martin Fowler

QEilme
DEZNPA

MDmE ™

e | el

EYSEE \

Ec@DgE |

O

1
L)

rEiEPwg

Micresoft

Collective Wisdom

Enterprise Solution Patterns
from the Experts

Using Microsoft .NET

Version 2.0

Integration Patterns

Programmer

patterns & practices

(7]
<))
O
£)
(&)
@©
. —
(of
o3
75}
=
S
(]
4
+—
(]
(o}

O'REILLY* Edited by Kevlin Henney

© 2015 Gregor Hohpe www.EnterpriselntegrationPatterns.com

The Book

9th Conferenceon Pattern Language of Programs 2002 http://hillside.net/
Monticello, lllinois plop/plop2002/
Welcome to PLoP 2002 proceedings.html

PLoP 2002 Proceedings (Draft)

Proceedings Mote to authors: Please check the link to the paper and make sure that it
Call for papers contains your final revision. Any corrections should be sent to Weerasak
Focus Topics Witthawaskul at plop2002chair@yahoo.com.

Faper Submissi . . .
Sachgglulz TMi=SI0ns Copyright 2002 by paper authors, Permission is granted only to copy for the PloP

2002 conference.

PlLoP 2002

Reqgistration

Location . ek
Call for Volunteers Update: 9 Sep 2002 Mock Workshop Paper - Distributed Cache Pattern
All PLoPs .
Section 1 Accepted Papers
——]
(%]
2 0 0 2
Linking Patterns sand Non-
1. Araujo, M. Functional Requirements (was Brian -
18 Weiss ‘Using the NFR Framework for Marick Enc Evans
Representing Patterns')
Group 2 Leader: Martin Fowler and Ali Arsanjani
Patterns for Implementing
. . - Masac John
1 ||A. Arsaniani Grammar—Orrenred Object Tomono Viesides
Design
Towards g Pattern Language for
o Web Services Architecture (was || Gustavo John
'4]_ T . - = .
3 [A-Arsamani 'Patterns for Web Services Rossi Vlissides
Architectures')
13 . .)
_ _ Phip |ohn Enterprise Integration Patterns
14 (|G, Hohpe Enterprise Integration Patterns : —
Eskelin Vlissides G H h
A. Corsara, O . , . O pe
e —— Virtual Component A Design .
4 EI. ?céhrdm%, R Psttern for Memory-Constrained _E_mhhael —CIEDI_LI' it
D'E.\?EEII'I T Embedded Applications lrener =o

Section 2 Large Pattern Language Group Papers

“Patterns of System Integration with

Patterns of System Integration with Enterprise . . 1]
ging Sobby Vwooll, KVIE Drown
1 Meseagin Bobbv Woolf, Kvle Brown Enterprlse Messaglng
Strateqgic Design (excerpt from Domain Driven
2 Design) - Entire manuscript can be downloaded || Eric Evans B_ WOOIf’ K_ Brown
from here.
Some Algorithm Structure and Support Berna Massingill, Timothy
3 Patterns for Parallel Application Programs G. Mattson, Bewverly A.
(abstract) Sanders 9

http://hillside.net/plop/plop2002/proceedings.html

Overview

Table of Contents

En ,{%'te
Im™® ,’;‘o ‘on
Pa\. 04,/.:)’

What are Enterprise Integration Patterns?

Very few business applications can live i 1solation. More often than not, applications have to be integrated with
other applications inside and outside the enterprise. This integration 15 usually achieved through the use of some
form of "middleware". Middleware provides the "plumbing" such as data transport, data transformation, routing
etc. Popular implementations of these concepts are found in EAT suites such as IBM MQ, TIBCO, SeeBevond etc.,
as well as messaging spectfications such as JMS or Web service standards like SOAP.

Architecting integration solutions is a complex task. There are many conflicting drivers and even more possible
'nght’ solutions. Whether the architecture was in fact 2 good choice usually is not known until many months or
even years later, when inevitable changes and additions put the original architecture to test. There is no cookbook
for enterprise integration solutions. Most integration vendors provide methodologies and best practices, but these
instructions tend to be very much geared towards the vendor-provided tool set and often lack treatment of the
biggzer picture, including undedyving suidebnes and principles.

Therefore, we started to collect enterprise integration patterns, similar to the architecture and design pattems who
have helped many application architects design robust applications over the past vears. The patterns on this site
have been harvested from multiple vears of hands-on enterprise integration work with a vanety of organizations.
Still, the effort has just begun and is quite incomplete.

Who can use Enterprise Integration Patterns?

The patterns presented on this site help integration architects and developers design and implement integration
solutions more rapidly and reliably. hMost of the patterns assume a basic familianty with publish-subscribe
messaging architectures. However, the pattems are not tied to a specific implementation. host pattems apply to
EAT suites as well as Web Services or IM3-based applications. In some cases, a pattern may already be embedded
in the middleware package. This is a sign that the vendor recognized the recurring problem and incorporated the
solution mnto the package. We still present these patterns for two reasons. First, not all packages implement the
same patterns, so a user workign with another package will still find the pattern useful Second, despite the default
mmplementation of the pattern in the middleware package, a description of the forces and alternatives 15 msightfl
for any architect or developer who is interested in EAL concepts beyond the specific packagze inplementation.

The Patterns

)
Quick Reference

age Channel

age Routing
Pipes and Filters

Content-Based Router

Seguencer
Aggregator

Distribution with Agaregate
Fesponse

Broadcast with Aggregate
FEesponse

Recipient List
Routing Table
Message Transformation
Data Enricher

Store in Library

Content Filker

Control Bus

Message Header

Envelope Wrapper

Message History

Message Store

Test Message 10

OOPSLA 2003

= 185,000 Words
= 730 pages
= 65,000 copies sold

Languages

= English
= Russian
= Chinese Traditional

= Korean

= Sketches, summaries under
Creative Commons

= Visio, Omnigraffle stencils

ENTERPRISE < /%
INTEGRATION
PATTERNS

GREGOR HOHPE
Bospy WOOLF

Wi CoNTRsutions ny

KYLE BrowN
ConrAaD E D'Cruz
MARTIN FOWLER
SEAN NEVILLI
MicHAEL J. RETTIG
JONATHAN SIMON

Forewords by John Crupi and Martin Fowler

http://www.eaipatterns.com/

:
Buschman, Pattern-Oriented Software Architecture

Dyson, Architecting Enterprise Solutions

SAN DIEGO

Fowiler, Patterns of Enterprise Appiication Architecture

Gamma et al, Design Patterns

Hohpe et al, Enterprise Integration Patlerns

Kircher. Pattern-Oriented Software Architecture

Schmidt. Pattern-Oriented Software Architecture

y

My &i'N"'Gar!aﬂd Software Architecture

-

(We : : - < T 4)i rrmo
\ W20 “cidge et al_Integration Patterns

'1
3

54 TR, SRR O T R P e

-

James Strachan’s Blog

Random ramblings on Open Source, integration and other malarkey

TUESDAY, 15 MAY 2007

£ Enterprise Integration Patterns in Java using a DSL
. he C l James Strachan
via Apache Came | Mels, Frome,

England, United

For those of you who missed me
Kingdom

rambling about this at JavaOne |
thought I'd introduce Camel to
youl.

Software Fellow at FuseSource

= View my complete profile
Apache Camel 1s a powerful rule
based routing and mediation
engine which provides a POJO
based implementation of the
Enterprise Integration Patterns

using an extremely powerful fluent
API (or declarative Java Domain
specific Language) to configure
routing and mediation rules.

The Domain Specific L anguage
means that Apache Camel can support type-safe smart completion of
routing and mediation rules in your IDE using regular Java code without
huge amounts of XML configuration files; though Xml Configuration inside
of Spring 2 is also supported.

A good way to get started is to take a look at the Enterprise Integration

, # 'S) ¥ James Strachan ghlan
Patterns catalog and see what the Java code of an example looks like. & 5006 commits, 42 kudos

For example, try the message filter, content based router or splitter.

Enterprise
Integration

Isolated Systems

Unified Access

© 2015 Gregor Hohpe

)

www.EnterpriselntegrationPatterns.com

15

Why This Is Still Interesting

Large-scale and complex

Far-reaching implications, business critical
Distributed, heterogeneous environment
Applications not designed to be connected
Semantic Dissonance

Not object-oriented

Variety of skills and technologies
Corporate politics

Plus

Distributed applications are the norm
Increased customer expectations
REST services, simpler protocols

© 2015 Gregor Hohpe www.EnterpriselntegrationPatterns.com

16

. » ¥ '"-‘. } wr i . ; 2
% ¥ % o

+~ g)
- - — A ’ N
33 5 % ' 3 : e
s} e - o
r J11 :
&> (

&

E 2
X o
p r
0 3
r
t i

)

i

Pros: Cons:
» Good physical decoupling « Data transfer not immediate

« Language and system « Systems may be out of sync

independent « Large amounts of data

© 2015 Gregor Hohpe www.EnterpriselntegrationPatterns.com

Pros: Cons:
» Consistent Data Integration of data,

* Reporting not business functions

- Transactional guarantees » Difficult to find common
representation

© 2015 Gregor Hohpe www.EnterpriselntegrationPatterns.com

: v . . s ‘ oy
% % o
74 }'n o ” ":l
n Y 4 Jip

ay
) ¥ “';'
n #
4y of N
- - L
e o
B A
-
Sy ¥
5 &> (

Pros: cons:

» Data exchanged only as needed » Works well only with small

* Integration of business number of systems
function, not just data » Fragile (tight coupling)

 Performance

© 2015 Gregor Hohpe www.EnterpriselntegrationPatterns.com

Messaging

Asynchronous Messaging Style

Sender —>E§ —> @l | Receiver

Channel

(Queue)
Systems send messages across Channels

Message

Channels have logical (location-indep.)
addresses

Placing a message into the Channel is quick
(“fire-and-forget”)

The Channel queues messages until the
receiving application is ready

Simplified
Interaction

Location
Decoupling

Temporal
Decoupling

An "honest" architectural style that does not try to deny
the limitations of the underlying medium.

© 2015 Gregor Hohpe www.EnterpriselntegrationPatterns.com

21

. A
Whi Asinchronous Messaﬂlnﬁ? %<

V/

7

Asynchrony

Sender does not have to wait for receiver to process message
Temporal decoupling

Throttling
Receiver can consume messages at its own pace
Processing units can be tuned independently
Can be Reliable Over Unreliable Networks

Messages can transparently be re-sent until delivered
Think cell phones — intermittent and unreliable
Insertion of intermediaries (Pipes-and-Filters)
Composability
Transformation, routing etc.
Throughput over latency
“Wider bridges not faster cars”

© 2015 Gregor Hohpe www.EnterpriselntegrationPatterns.com 22

A New “Tower

of Babel”

A
Meon_Systems
Microsoft Seetleyond
Sungard Fere-grine IBN webMethods
= Candle Drade\\ \ rfjrlam
o Heathcare.com +—Vitria
% Sterling Commerce Mﬂ]l WL-E:r::mp.aq SybaseMNEON
g Vignette — 4 *——— CrossWorlds
> L I?E. e = lona
5 e SoftwareA
= F’rnpeh*‘a Wb, Mercator
Opfio WRQ Viewlocty
Fujitsu Siemans Dﬂmm,rmr Kabira
Sopra |F'Ianet
Metik

© 2015 Gregor Hohpe

completeness of vision

Gartner “Magic Quadrant” for
Integration and Middleware 2001

www.EnterpriselntegrationPatterns.com

23

© 2015 Gregor Hohpe

www.EnterpriselntegrationPatterns.com

24

Messaging
Patterns

Messaging Pattern Language

1.
2.
3.

Applicatiori

Transport messages App"catif"!
Design messages 1@
Route the message to

the proper destination

Transform the message
to the required format

Produce and consume
messages

Manage and Test the
System

© 2015 Gregor Hohpe www.EnterpriselntegrationPatterns.com

Applicatio

4'

26

Messaging Pattern Language

1. Transport messages
2. Design messages

3. Route the message to
the proper destination

4. Transform the message
to the required format

5. Produce and consume
messages

6. Manage and Test the
System

Channel Patterns @D
Message Patterns ID
Routing Patterns =
Transformation Patterns
Endpoint Patterns Application

Management Patterns

© 2015 Gregor Hohpe www.EnterpriselntegrationPatterns.com 27

Message
Construction

Message
Routing

Message Router

Message
Command Message
Document Message
Event Message
Request-Reply
Return Address
Correlation Identifier
Message Sequence
Message Expiration
Format Indicator

Message Filter
Dynamic Filter
Recipient List
Splitter
Aggregator
Resequencer

Scatter-Gather
Routing Slip

Endpoint ™,

Application
A

>
-
e
-

Messaging
Endpoints

Message Endpoint
Messaging Gateway
Messaging Mapper
Transactional Client
Polling Consumer
Event-Driven Consumer
Competing Consumers
Message Dispatcher
Selective Consumer
Durable Subscriber

Messaging Adapter
[dempotent Receiver
Service Activator

Message

Message Broker

Channel

e tesassrancsaa

Messaging
Channels

Message Channel
Point-to-Point Channel
Publish-Subcr. Channel
Datatype Channel

Invalid Message Channel
Dead Letter Channel
Guaranteed Messaging
Channel Adapter
Messaging Bridge
Message Bus

Composed Msg. Processor.

Process Manager

Content-Based Router

Message
Transformation

Message Translator
Envelope Wrapper
Content Enricher
Content Filter

Claim Check
Normalizer

Canonical Data Model

--o-u.-...

Transjator

Endpoint

Monitoring

Systems
Management

Control Bus
Detour
Wire Tap
Message History
Message Store
Smart Proxy
Test Message
Channel Purger

Application
B

Visual Language

I [b

O
v
O

© 2015 Gregor Hohpe

Content-Based Router
Message Filter
Recipient List

Splitter

Aggregator
Resequencer

Routing Slip (Itinerary)

Process Manager

www.EnterpriselntegrationPatterns.com

29

Composing Patterns

Receilve an order
Get best offer for each item from vendors
Combine into validated order.

Scatter-Gather

\ 4

] Quote

Vi A —

Pub-Sub M

Channel

‘ D»D \ t@t@t@ — Vendor B I—> —
Quote Request

(N)crac\;\é r Splitter for each item Vendor C |—> —

0
O o R Y T
“Best” Quote

Validated Aggregator or each iterm Aggregator

v

\ 4

Order

© 2015 Gregor Hohpe www.EnterpriselntegrationPatterns.com

Patterns &
Pattern
Languages

Patterns Revisited

Shows a good solution to a common
problem within a specific context

“*Mind sized” chunks of information
(Ward Cunningham)

Expresses intent (the “why” vs. the “how”)

Observed from actual experience

NOT:

« A firm rule — always a time when not to use
« Copy-paste code snippet — just example

* Isolated — Part of a Pattern Language

© 2015 Gregor Hohpe www.EnterpriselntegrationPatterns.com

Design Patterns

Elements of Reusable
Object-Oriented.Software

Erich Gamma
Richard Helm
Ralph Johnson
John Vlissides

PATTERN-ORIENTED
SOFTWARE
ARCHITECTURE

On Patterns and Pattern Languages

32

Patterns and Architecture Styles

Patterns exist at different levels
« |ldioms (usually language specific)
« Design (usually system specific)
» Architecture

Patterns “belong” to an architectural style
« OO Patterns # Messaging Patterns

« Architectural style provides vocabulary to express
patterns

 Different vocabulary, composition rules, semantic
interpretation

Integration uses a variety of architectural styles

« Messaging (pipes-and-filters), Data transformation
(functional), endpoints (object-oriented), conversations
(state machine)

© 2015 Gregor Hohpe www.EnterpriselntegrationPatterns.com

SOFTWARE
ARCHITECTURE

PERSPECTIVES ON AN EMERGING DISCIPLINE

33

Christopher Alexander’s Patterns

BED ALCOVE hed

Design problem 3] oo

Bedrooms make no sense. (viewvinto larger
Forces common space
First, the bed in a bedroom creates awkward

spaces around it: dressing, working, watching television,
sitting, are all rather foreign to the side spaces left over
around a bed. (...)

Second, the bed itself seems more comfortable in a space
that is adjusted to it.

Solution

Don't put single beds in empty rooms called bedrooms, but
instead put individual bed alcoves off rooms with other
nonsleeping functions, so the bed itself becomes a tiny private
haven.

Related Patterns
Communal Sleeping, Marriage Bed
Ceiling Height Variety, Half-open Room, Thick Walls

© 2015 Gregor Hohpe www.EnterpriselntegrationPatterns.com

A Pattern Language

Towns - Buildings - Construction

Christopher Alexander

Sara Ishikawa - Murray Silverstein

Max Jacobson - Ingrid Fiksdahl-King
Shlomo Angel

34

Pattern Structure

Name
lcon
Context

Problem
Forces
Sketch

Solution
Results
Next
Examples

0,0 | |Aggregator Messaging Patterns
= @ Previous Next @

Messacing Patterns » Messace RouTing » AGGREGATOR

A Splitter 15 vseful to break out a single message info a sequence of sub-messages that can be processed mdividually. Likewise.
a Recipient List or a Publish-Subscribe Chamel 1s useful to forward a request message to multiple recipients in parallel in order
to get multiple responses to choose from. In most of these scenarios, the further processing depends on successful processing
of the sub-messages. For example, we want to select the best bid from a oumber of vendor responses or we want to bill the
client for an order after all items have been pulled from the warehouse.

How do we combine the results of individual, but related messages so that they can be processed as a whole?

% % Y] -

Inventary Inventory Inventory
tem 1 ltem 2 ltem 3 Aggre gatar Inventory
Crder

Use a stateful filter, an dggregator, to collect and store individual messages until a complete set of related messages has
been received. Then, the 4ggregaror publishes a single message distilled from the individual messages.

The Agsregator is a special Filfer that receives a stream of messages and identifies messages that are correlated. Onee a
complete set of messages has been received (more on how to decide when a set is "complete’ below), the dggregafor collects

information from each correlated message and publishes a single, aggregated message to the output channel for further
processing.

© 2015 Gregor Hohpe

www.EnterpriselntegrationPatterns.com 35

Pattern Language

Patterns don't live in isolation
» Pattern Compounds
e Pattern Sequences
« Pattern Collections
« Pattern Languages

Patterns are “harvested”
« Story behind the scenes for GoF
* How patterns are refined and applied

© 2015 Gregor Hohpe www.EnterpriselntegrationPatterns.com

PATTERN-ORIENTED
SOFTWARE
ARCHITECTURE

On Patterns and Pattern Languages

PATTERN HATCHING
Design Patterns Applied

36

Pattern Language: Message Flow

Message

Construction

Message
Routing

Message
Command Message
Document Message
Event Message
Request-Reply
Return Address
Correlation Identifier
Message Sequence
Message Expiration
Format Indicator

Endpoint .
Message

Application
A

-
-
-
o®

Messaging
Endpoints

Message Endpoint
Messaging Gateway
Messaging Mapper
Transactional Client
Polling Consumer
Event-Driven Consumer
Competing Consumers
Message Dispatcher
Selective Consumer
Durable Subscriber
Messaging Adapter
|dempotent Receiver
Service Activator

© 2015 Gregor Hohpe

Message Filter
Dynamic Filter
Recipient List

Message Router
Content-Based Router

Message
Transformation

Endpoint

Splitter Message Translator

Aggregator Envelope Wrapper

Resequencer Content Enricher

Composed Msg. Processor. Content Filter

Scatter-Gather Claim Check

Routing Slip MNormalizer

Process Manager Canonical Data Model

Message Broker H

, i

Channel RQ‘uter Trans.jator

rtecmmcsrennas.

Mességing
Channels

Message Channel
Point-to-Point Channel
Publish-Subcr. Channel
Datatype Channel

Invalid Message Channel
Dead Letter Channel
Guaranteed Messaging
Channel Adapter
Messaging Bridge
Message Bus

Monitoring

www.EnterpriselntegrationPatterns.com

Application
B

Systems
Management

Control Bus
Detour

Wire Tap
Message History
Message Store
Smart Proxy
Test Message
Channel Purger

37

Pattern Language: Root Patterns

Chapter 1:
Integration Messaging
Styles
AN

o A A —h
Chapter.2: Message Message Pipes and Message Message Message
Messaging Channel g Filters Router Translator Endpoint
Systems

AN VA

\ 4 \ 4
Chapter 3: Chapter 4:
Messaging Message
Channels Construction

© 2015 Gregor Hohpe

N/

Chapter 5:
Message
Routing

\ 4 \ 4
Chapter 6: Chapter 7: Chapter 8:
Message Messaging Systems
Transform. Endpoints Managemen

www.EnterpriselntegrationPatterns.com

38

Pattern Language: Alternatives

Exactly One

Single msg out .
Zero or One
Parallel
Mult. msgs ou .

Sequential

Process one msg at a
time (stateless)

JAI L

O
v
O

D—PDDD

Content-Based Router
Message Filter
Recipient List

Splitter

Aggregator

Resequencer

O
O ooo
L| *
O O O

O
v
O

0-»0 | Compos. Msg. Processor

Simple
Process multiple Less msgs out
msgs at a time (stateful) .
Same number
of msgs out
Split Message
Composed Parallel .
. Broadcast Message
Predetermined, Linear
Sequentia

o))
)
QD
—
@
)
QD
—
o0
D
—

O
O-»0
O

Any Path

© 2015 Gregor Hohpe

L

www.EnterpriselntegrationPatterns.com

Routing Slip

Process Manager

39

Pattern “Sketches” The Icons / Gregorgrams

*Biggest step was having a “box in the middle”

\A|—>|B\ A/E—:»m

*Pipes-and-filters = Simplest form of Composability

*Some icons missing

‘ﬁﬁ.‘rn =fix) \ 1IZ)I—> O

*Endpoint patterns compose differently

o]

Transactional Polling

© 2015 Gregor Hohpe www.EnterpriselntegrationPatterns.com 40

Pattern “Sketches”: Enriching the Vocabulary

Synchronous
Polling Puller Pusher
Consumer
Asynchronous
Event-Driven Pool / Buffer Driver
Consumer
Endpoints Connecting Elements

‘ Source FE Buffer ﬂ% Sink \

http://www.EnterpriselntegrationPatterns/ramblings/80_syncorswim.html

© 2015 Gregor Hohpe

www.EnterpriselntegrationPatterns.com

41

Fun with Pattern Icons

© 2015 Gregor Hohpe

www.EnterpriselntegrationPatterns.com

42

Richer Pattern Relationships

ENTERPRISE INTEGRATION PATTERNS

P MESSAGE CONSTRUCTION ¥

Source: Logica

T P
sy prem—
T

. o e i i by, e i T, e

T Pt

= FIRIIT) S T T
T

AT e O T
e e T

= RT3 T
T MR IRT LI TR

BT T STATE M

=t

T s
e T

Releas

n

© 2015 Gregor Hohpe

www.EnterpriselntegrationPatterns.com

43

Richer Pattern Relationships

Sarvica Activator

EIN SEvioe ACS(or ifiet MESSA0EE VON BNam MessSge
Channel an enen Sanios welier Lnd eemagicht BLf dese
\wBtEe, CRSS BN Sanice Cher dss Messagng-Systam

‘BUKENLBEN WEFDKN KENT. [SEfie 537)

Massaging Mapper

EIN Messaghg Manper kapsat o LOgk 10 085 Mecping
FnEschen dan 'W und dan EMRENCLNGS S{Ta—‘l

MESSAGE ENDPOINTS

Messaging Gateway

N Messagng Gafass) wit eingesst, um den Zug aur
i3E MESSEGNG - SyEET VOr 0 ATWENCLNg 21 Vertengen.
s kepect messagng spadische Methodansuus und

slelt oer Amwencung dEin domen-spasiische Metnoden

[unch einen Messsge Frgnait wid 8iNe Arwenang
Mt Ererm Message Shanns varbunden. Sia rut dan

"41‘553'; Enoiooiry um 'WZ U versencen und Al
ampianoen. Salkeos)

Messaging Bridpa

e Messsqing Brige stell dne vertindung swischen
Messagng- Syslarman dar, mi deven Hie OB MEssEes
o heleliylen SyEleme Eboegichen wardan Korren

{==in 139)

T

Transactional Cliant
En Tenssitns! Cant Kb da Kommunkston mit dem
MEEsSgnGg Sysam Tanssdonsl dunh, Auf diess \Weks
Wit scherpasialt, chss ane Messsge wikch andas

Messaging Sysam (hemmied wurde. ([Satie 454

BN Hampotary! Aecaber arennt DUpats von Messsges
Mefriach ;upesialie Messsgas Knen bal snam bampo
ert Recaver nicnt 2u ainem Iachichan Problem. (Sale 528

Durable Subscriber

En Durahe SU0ecrar Wit BNgEsEC, Wann wEmiecan
warian =0l dass ain FTpBnger MosEATEE VN einam

Source: Logica

© 2015 Gregor Hohpe

B heesaging- Sysiem verbunden it Des Messaging
Bystern spachat e Messsges 1 dan Bmplanger Inenem
sperielen Massage Channe b diese abganol weran,

Edia 522)

www.EnterpriselntegrationPatterns.com

Salective Consumer

EIn Saiecile Consmar |‘|!'.T..".'i'.‘.'5.'.-3.1_}‘.'.6{ urid tet diesa
U dann an den rrl;'r.p weder, wenn e bestrmmisn
Krilerien entsprechan. (Sate 515)

EIN AMessage Dispaicher verat o vesrbatung sne
W‘iﬁg" & aren von mehnanen Theeacs. De Paaiaks
nung cer verEraiung dent in der Regel 2ur Optmienng

oer Periomance. [Sefe 508)

Ewent-Driven Consumsar

I EEn-CRVEN (CONEUTET NIOnTiET 08 ATWEnoung (o
e MeuE mﬂ;!", 2nte dess Im Masssos Charnms
vertligher 152, Im Cagensats 2Um Foling SORSuUmEr Muss
O Fvant-ven Consumer nich regeimang ul neues
AEsssgEs [priien, Soncem wit vom Messagng-Sysiam
b ot (Sate 408

kmnm nicht kombiniert werden mit W —

WE

44

Patterns Hands-on

ENTERPRISE
INTEGRATION
PATTERNS

m%/

JONATHA

vof ¢ ;-) John (rup and Martin Fowles

© 2015 Gregor Hohpe www.EnterpriselntegrationPatterns.com

Messaging
Patterns
in Action

Pattern: Request-Reply

Consumer Request Provider

— b —~ -, —
Request Channel

— % — o - Y

Reply Channel

Reply

Service Provider and Consumer (similar to RPC)
Channels are unidirectional

Two asynchronous Point-To-Point Channels
Separate request and reply messages

© 2015 Gregor Hohpe www.EnterpriselntegrationPatterns.com

47

Multiple Consumers

Requests Requests Provider

Request Channel
consumer] — T Yy — o % %5 -
< -

Reply Channel 1 S
Consumer|—

Reply Channel 2

: C — Replies

E1El

Each consumer has its own reply queue
How does the provider know where to send the reply?

= Could send to all consumers - very inefficient
= Hard code - violates principle of context-free service

© 2015 Gregor Hohpe www.EnterpriselntegrationPatterns.com

Pattern: Return Address

Reply Reply _
Channel 1 Channel 2 Provider

Request Channel
Consumer| — 1=
Z. Q\

‘ *1@
Reply Channel 1

Consumer| — Replies

Reply Channel 2 tE

Consumer specifies Return Address (reply channel) in the
request message

A

E1El

Service provider sends reply message to specified channel

© 2015 Gregor Hohpe www.EnterpriselntegrationPatterns.com

Multiple Service Providers

Provider 1

R
Provider 2}

~N
Request Channel _
q 1& —| Provider 2

consumer

— %o % Y-

Reply Channel

Request message can be consumed by more than one
service provider

Point-to-Point Channel supports Competing Consumers,
where only one service receives each request message

Channel queues up pending requests

© 2015 Gregor Hohpe www.EnterpriselntegrationPatterns.com

Multiple Service Providers

-

Service 1 Service 2
Consumer (slow) (fast)
Request 1 :
N~ > :
= Request 2
: ly 2
I:;:|<Repy
Reply 1
< ply

© 2015 Gregor Hohpe

Reply messages get out of
sequence

How to match request and

reply messages?

= Only send one request at a time
—> very inefficient

= Rely on natural order
-> bad assumption

www.EnterpriselntegrationPatterns.com 51

Pattern: Correlation ldentifier

Consumer A Message '-|II
Identifier —| Provider 1
— @ Fg — Prover 1
Request Channel
g ‘@ Provider 2|—

Correlate
Request &
Reply

Identifier

— Response Channel Correlation

Equip each message with a unique Correlation Identifier
= Message ID (simple, but has limitations)

= GUID (Globally Unique ID)

= Business key (e.g. Order ID)

Provider copies the ID to the reply message
Consumer can match request and response
Insert a SmartProxy if provider does not support this

© 2015 Gregor Hohpe www.EnterpriselntegrationPatterns.com

52

Pattern: Pipes-And-Filters

Pipe Pipe Pipe Pipe
—@—| Decrypt Authenticate E:)—'
Incoming Filter Filter Filter ‘Clean’
Order Order

Connect individual processing steps (filters) with message
channels (pipes)

* Pipes decouple sender and receiver
= Participants are unaware of intermediaries
= Compose patterns into larger solutions

© 2015 Gregor Hohpe www.EnterpriselntegrationPatterns.com 53

Multiple Specialized Providers

Order
Messages ’% —| Widget Inv

oder |, @ — oo @
Entry
’E —| Gadget In

jli

Each provider can only handle specific type of message

Route request to the “appropriate” provider based on the
content of the request message

= Do not want to burden sender with decision (decoupling)

= Letting each consumer “pick out” desired messages requires
distributed coordination

© 2015 Gregor Hohpe www.EnterpriselntegrationPatterns.com 54

Pattern: Content-Based Router

Order

Messages /=)"1% —| Widget Inv
i AR S g —
Entry —
Content- \=)->t$ —| Gadget In

Router

Insert a Content-Based Router

Message routers forward incoming messages to different
output channels without changing message content.

Mostly stateless, but can be stateful (e.g. de-duper)

© 2015 Gregor Hohpe www.EnterpriselntegrationPatterns.com 55

Composite Message

Order
Message

= e (2

o :)"’% 1 Widget Inv

Widget Invg]
™ @B | Gadget g

How can we process a message Iif it contains multiple
elements, each of which may have to be processed in a
different way?

= Treat each element independently
= Need to avoid missing or duplicate elements
= Make efficient use of network resources

© 2015 Gregor Hohpe www.EnterpriselntegrationPatterns.com 56

Pattern: Splitter

Order
Message
1% 1 Widget Inv
E = D, ey
Entry
Order Order t& - Gadget In
Splitter ltem 1ltem 2

Use a Splitter to break out the composite message into a
series of individual messages, each containing data related
to one item.

© 2015 Gregor Hohpe www.EnterpriselntegrationPatterns.com 57

Composite: Splitter & Router

Order Order
Message 'tem 1
1 Widget Invé
Order . D _m 1@ 1&
Entry
Splitter I(t)(;?nerl I(t)é?nerz Router ~| Gadget In “g

Order
Item 2

Use a Splitter to break out the composite message into a
series of individual messages, each containing data related
to one item.

Then use a Content-Based Router to route the individual
messages to the proper destination

© 2015 Gregor Hohpe www.EnterpriselntegrationPatterns.com

58

Producing a Single Response

Order Order Response 1 Confirmed Order
o %
O
T OO0 @ e
‘ AN R
> -> . Order Order
Splitter Item 1 ltem 2

Order Response 2

How to combine the results of individual, but related
messages so that they can be processed as a whole?

= Messages out of order

= Message delayed

= Which messages are related?

= Avoid separate channel for each system

© 2015 Gregor Hohpe www.EnterpriselntegrationPatterns.com 59

Pattern: Aggregator

Order Response 1 .
tem 1 Confirmed

Order
’% 1 Widget Invé" ’%\
o[5 |- e —»Ig — [iling
’E - Gadget In:/é-» ’ﬂ/

Aggregator

Order Response 2

Use a stateful filter, an Aggregator, to collect and store

Individual messages until a complete set of related
messages has been received.

= Aggregator publishes a single message distilled from the individual
messages.

© 2015 Gregor Hohpe www.EnterpriselntegrationPatterns.com 60

Aggregator Design Decisions

Correlation: Which incoming messages belong together?

Completeness Condition: When to publish the result message?

= Wait for alll = Time box with override
= Time out (absolute, incremental) = External event
= First best

Aggregation Algorithm: How to combine the received messages?
" Single best answer Concatenate data for later analysis

= Condense data (e.g., average)

© 2015 Gregor Hohpe www.EnterpriselntegrationPatterns.com 61

Pattern: Scatter-Gather

Send a message to a dynamic set of recipients, and return a single
message that incorporates the responses.

Scatter-Gather

\ 4

Quote
Pub-Sub VendorA,l 1|]]]]_
Channel
O — = VendorB|—> _

uote
CRgequest Vendor CM —
O
< De«0O
1 :

“Best” Aggregator
Quote

v

\ 4

© 2015 Gregor Hohpe www.EnterpriselntegrationPatterns.com

Composing Patterns

Receive an order, get best offer for each item from vendors, combine
into validated order.

Scatter-Gather

\ 4

Quote
Pub-Sub VendorA,l 1|]]]]_
Channel
. _,f@fmfm ——&-—|vendor B[~ Ty —

New Splltter Quote R?ques'[B
Order for each item Vendor C

|

I:|<—|:| G— E%t@ EH_E

“Best” Quote Aggregator
A regator .
\(garllclloel?ted 9greg for each item

v

\ 4

© 2015 Gregor Hohpe www.EnterpriselntegrationPatterns.com

Pattern: Control Bus

Application Message Flow

S S o B

. Management
g Console

Configuration

Heartbeat

Test messages

Exceptions / logging

Statistics / Quality-of-Service (Qo0S)
Live console

© 2015 Gregor Hohpe www.EnterpriselntegrationPatterns.com

64

Pattern: Test Message

Test Message Test Message
Injector tgtgtg tgtgtg Separator
’D ’D -_— -_— Processor \—V —'/‘: \—V ’D ’D
Appl. Appl. Test Appl. Appl.
Msg. 1 Msg. 2 ’E Test Result ’E Msg. 1 Msg. 2
Message

.. > Test I_D_ata
Verifier

Test Data Control Bus l

Generator @

Management Console

Inject application specific test messages
Extract result from regular message flow
Compare result against predefine (computed) result

© 2015 Gregor Hohpe www.EnterpriselntegrationPatterns.com 65

Messaging
Patterns
Today

Google Cloud Pub-Sub

Competing
Consumers

Publisher
B

Messa@

Publisher

Mess

age 3

Topic B

\

Subscription B

Topic C

PN

Cloud
Pub/Sub

Subscription YC

Subscription ZC

—

——>
—»

Message
Message 3
Explratlon D

\

—[: @ Subscriber
B1 B2

Durable
Subscriber

© 2015 Gregor Hohpe

Subscrlber Subscriber

| Message 3| Publish-Subscribe

\

Y

Point-to-Point

Subscriber
Z

Transactional

Client

—@\ Publish-Subscribe

www.EnterpriselntegrationPatterns.com

Channel

=

Polling
Consumer

67

Serverless

13. Architectural Patterns

13.1 Asynchronous Messaging

13.2 Big Ball of Mud

13.3 Command and Query Responsibility Segregation (CQRS)
13.4 Event-Driven Architecture

13.5 Orchestrated Workflow

13.6 Pipes and Filters

14. Microservice Roles

14.1 Message Originator

14.2 Content Enricher

14.3 Event Mediator

14.4 Event Processor

14.5 Coexistant Versions

14.6 Fanout

14.7 Async Waterfall (with optional Fanout)

14.8 Need Solution

14.9 Transformer
1410 Worker

15. Integration Styles

Patterns of Modern Application Design 15.1 File Transfer
US|ng MICI’OSQFVICGS 15.2 Shared Database

15.3 Remote Procedure Invocation

15.4 Messaging

Obie Fernandez

16. Messaging Systems
16.1 Message Channel
16.2 Message

16.3 Message Router

AMAZON WEB SERVICES EDITION 16.4 Message Translator

16.5 Message Endpoint

© 2015 Gregor Hohpe www.EnterpriselntegrationPatterns.com

68

Reactive

’:. \‘._'\‘?/4" :'.\. °
¢ 7,
@

N

REACTIVE
MESSAGING

PATTERNS

with the

ACTOR MODEL

APPLICATIONS AND INTEGRATION
IN SCALA AND AKKA

V AUGHN VERNTUON

Foreword by Jonas Bonér, Founder of the Akka Projec!

© 2015 Gregor Hohpe

Chapter 4 Messaging with Actors
Message Channel

Message

Pipes and Filters

Message Router

Message Translator

Message Endpoint

Summary

Chapter 5 Messaging Channels
Point-to-Point Channel
Publish-Subscribe Channel
Local Event Stream
Distributed Publish-Subscribe
Datatype Channel

Invalid Message Channel

Dead Letter Channel
Guaranteed Delivery

Channel Adapter

Message Bridge

Message Bus

Summary

Chapter 6 Message Construction
Command Message

Document Message

Managing Flow and Process
Event Message

Request-Reply

Return Address

Correlation Identifier

Message Sequence

Message Expiration

Format Indicator

Summary

Chapter 7 Message Routing

www.EnterpriselntegrationPatterns.com 69

Extending
Messaging
Patterns

Expanding the Integration Patterns

4)
E*D Pattern
U J
@ Project
4)

o—[]

m]
o0
a

U

Platform
Tools

J

© 2015 Gregor Hohpe

—)

Broaden

<
‘ > | Other
. Patterns
J

www.EnterpriselntegrationPatterns.com

71

Patterns as Domain Language

* Messaging toolkit
e Compose solutions from the command line

 Raised level of abstraction

orderchannel orderenrichedChannel
Splitter orderEnrichedChannel 1itemChannel "/Order/Item"
Router itemChannel coldBevChannel "Item = 'FRAPPUCINO'" hotBevChanne

I

call
call Logger coldBevChannel

call Logger hotBevChannel

- - coldBevChannel
Customer Enricher Splitter Router — E ILogger
' ‘ O—[| |:|—>§ —o/::
order orderEnriched item — Logger
Channel Channel Channel hotBevChannel E

© 2015 Gregor Hohpe www.EnterpriselntegrationPatterns.com 72

Patterns Components

« Human communication « System Communication
* Fuzzy . * Precise

« Design tool “+—/ °* Executable

« Platform independent * Platform dependent

= Simple composability: Pipes and Filters

—O—| >E [=

= Easy formalization: Input ports, Output ports

Input Port+ D—»E } Output Port

= Other domain languages: XSLT, XPath

© 2015 Gregor Hohpe www.EnterpriselntegrationPatterns.com

73

Improving Projection — Variability Points

L]
=" | Aggregator

Element ID

Input Channel
Output Channel
Correlation Function

Completeness
Condition

Aggregation Algorithm

© 2015 Gregor Hohpe www.EnterpriselntegrationPatterns.com

Conversations

Request-Reply

Conversation
State Chart
— M
Request "
Channel [Awaltlng]
Answer
—ale t@, <+
Reply
Requestor Channel Replier

Simplest conversation
Single Conversation state: waiting for reply, complete
Gets more complicated once error conditions considered

© 2015 Gregor Hohpe www.EnterpriselntegrationPatterns.com 76

Request-Reply with Retry

Conversation
State

Request > | Awaitin
{ Request (Resend) > Answer]

p Response

Consumer Provider

[resp

Sender can repeat request n times ®

Provider has to be idempotent Success_Falec
Receiver also has to be idempotent
Example: RosettaNet Implementation Framework (RNIF)

© 2015 Gregor Hohpe www.EnterpriselntegrationPatterns.com 77

Enterprise Integration or Messaging Patterns?

Enterprise
Integration

)

Messaging

© 2015 Gregor Hohpe www.EnterpriselntegrationPatterns.com

Enterprise Integration or Messaging Patterns?

Enterprise
Integration

*

Messaging

1
Conversations

Processes

Events

© 2015 Gregor Hohpe

www.EnterpriselntegrationPatterns.com

79

Messaging

Flow of messages through processing nodes

> | <L
O Translator O
o— 100 OO O—+0O
O O
Test Message Splitter »| 0—[] Aggregator
Enricher

» Stateless -> scaleable, decoupled
« Error handling?
« Complex interactions (no guarantees)

© 2015 Gregor Hohpe www.EnterpriselntegrationPatterns.com

Conversations

Internal State:
Processing
Payment

\:;E

State

Conversation J

LI
o e
* d
o
B .,
.
.
.
.
.
0y
. 0y
. . ’
. .
. .
.
.

iinvoice

_Payment |

-
RN

Internal State:
Waiting for
Payment g
Internal State:
Making Drinks

7

« Each conversation corresponds to one process instance
» Each participant has a (potentially different) process definition

© 2015 Gregor Hohpe

www.EnterpriselntegrationPatterns.com

81

Example: Subscriptions

Publish-Subscribe Channel

—»E—»:)—

Publisher

Subscribe-Notify

How can the sender broadcast an event to all

"t
Subscriber _Subscribe'
Notify
{@» < Notify
Subscriber —Dotify
>’E_> Subscriber Provider

Subscriber

interested receivers?

» Follows the message

« Multiple receivers
« One-way

How can one participant receive information from

another participant if that information cannot
easily be packaged into a single message?

 Follows time

* Single receiver

« Two-way

« Deals with transport issues « Deals with state / resources

© 2015 Gregor Hohpe

www.EnterpriselntegrationPatterns.com

82

Conversation
Patterns

Challenges: Describing Conversations

» Sequence Diagrams (UML 1.x) only show one instance, not the rules
of interaction

» Sequence Diagrams (UML 2.0) more powerful, but non-intuitive
notation

* WS-CDL pretty much died.

 WS-BPEL too verbose and technical, looking from participant
perspective

» Temporal Logic expressive, but not good for sketch
 BPMN probably best choice, but tough to see the essence.

Dynamic views are much tougher for the brain to process as it
requires a translation from a static image to a dynamic process.

© 2015 Gregor Hohpe www.EnterpriselntegrationPatterns.com 84

Conversation Sketches

Flow Messages
Annotations Request >
Lease
At
Renew
>
Lease (Renewed)

Requestor Provider

/

Participants

* Prefer a sketch with loose semantics that highlights the essence
« Use BPMN as implementation example

© 2015 Gregor Hohpe www.EnterpriselntegrationPatterns.com

De-Junking the Notation

Request

Pub-Sub

Consider

@I Pr0\1ider \

—) —— .
| Pr0\£|der \

@Respond
Provider

— 3 3

Lookup (Broadcastl

Available
«

Available
«

Message

Initiator

|
=
H

Providers

© 2015 Gregor Hohpe

www.EnterpriselntegrationPatterns.com

Focus on Actions

Seqguence Numbers

Focus on messages
Named participants
Top-down timeline

Simpler graphics

86

Conversation Pattern Language

Setting Up C> Participants C> Application-level

e O 00

Discovery Basic Conversations Resource Management

=1 R

Initiation Intermediaries Ensuring Consistency

© 2015 Gregor Hohpe www.EnterpriselntegrationPatterns.com 87

Conversation Pattern Language

-

Discovery

=]

0

Dynamic Discovery
Advertise Availability
Consult Directory
Referral

Leader Election

Basic Conversations

Resource Management

]

Fire-and-Forget
Asynchronous Req-Resp
Reqg-Resp with Retry
Polling

Subscribe-Notify

Quick Acknowledgment

* Incremental State
* Lease

 Renewal reminder

Initiation

Pl P

Three-way Handshake
Acquire Token First
Rotate Tokens

Verify ldentity

User Grants Access

Intermediaries

Ensuring Consistency

Proxy

Relay

Load Balancer
Scatter Gather

© 2015 Gregor Hohpe

 Ignore Error

« Compensating Action

» Tentative Operation

« Coordinated Agreement

www.EnterpriselntegrationPatterns.com

88

How can a conversation initiator
find a partner when it has no
knowledge whatsoever about

available partners?

Point-to-point communication requires knowledge of the conversation
partner (or channel).

Late binding between a participants lowers the location coupling.
Discovery may be on the critical path to establishing a conversation.

Even in the presence of a central lookup service, a new participant has to
first establish a connection to the lookup service.

© 2015 Gregor Hohpe www.EnterpriselntegrationPatterns.com 89

Dynamic Discovery

Lookup (Broadcastl

Available

Available — P

Message

|
HEE

Initiator Providers

1. Broadcast Lookup request
2. Interested providers send Available responses
3. Requestor initiates interaction with chosen provider

Examples: DHCP, TIBCO Repository discovery

© 2015 Gregor Hohpe www.EnterpriselntegrationPatterns.com

90

How can a participant let others know
that It is available?

Central services for discovery are bound to get out of sync with reality.
Centralized administration may result in a single point of failure.
Dynamic Discovery can flood the network with requests.

The number of available providers is often small compared to the number
of initiated conversations.

© 2015 Gregor Hohpe www.EnterpriselntegrationPatterns.com 91

Advertise Avalilability

Available (Broadcast)
Available (Broadcast) \

Available (Broadcast)

Available (Broadcast)

Initiator Providers

Directory may store additional metadata about the service

"Match making based on"
Unique Identifiers
Interface Definition / Type
Attributes
Keyword match

© 2015 Gregor Hohpe www.EnterpriselntegrationPatterns.com

How can a conversation initiator find a
partner across a large network without
flooding the network with requests?

Late binding between participants lowers the location coupling.
Many networks do not route broadcast packets beyond the local network.
Often centralized administration is involved in setting up a new service.

© 2015 Gregor Hohpe www.EnterpriselntegrationPatterns.com 93

Consult Directory

__|

Register
Register
Lookup
Reference
LMessage >
Initiator Registry

Directory may store additional metadata
"Match making based on"

Providers

about the service

Unique Identifiers, Interface Definition / Type, Attributes

Example: UDDI Directory, DNS

© 2015 Gregor Hohpe www.EnterpriselntegrationPatterns.com

94

The choice of conversation partner may
depend on the context of a conversation or
may change over time.

How can an initiator discover the right
conversation partner?

A participant may be required to interact with the same partner that
another participant is already interacting with.

Directories are generally context free, i.e. they do not keep track of
existing conversations and when assigning an initiator to a partner.

Some participants may not want to be "discovered". However, "friends of
friends" are allowed to interact with them.

© 2015 Gregor Hohpe www.EnterpriselntegrationPatterns.com 95

Referral

Request

Referral

Message

Initiator Referrer Referral

Consult Directory is a specialized case of Referral
Requires addressability, i.e. to embed addresses in messages

Example: HTTP 302

© 2015 Gregor Hohpe www.EnterpriselntegrationPatterns.com 96

Multi-Party Conversations: Intermediaries

Peer-to-peer

Coordinators

N

T

B B o B R O

Intermediaries

© 2015 Gregor Hohpe www.EnterpriselntegrationPatterns.com

1

Connectors

Proxy

How can a participant communicate with a partner that is not
visible or not reachable?

Message Message

>

>

Message Message

Initiator Proxy Partner

Initiator can hide identity using a Proxy

Proxy can monitor conversations

Proxy may need to be stateful for two-way conversations
Proxy can become a bottleneck

© 2015 Gregor Hohpe www.EnterpriselntegrationPatterns.com 98

Relay

How can participants engage in a two-way communication when each
participant is limited to outbound requests?

Message

Inquiry

Message
SN

Initiator Relay Partner

High overhead when using Polling
All other conversations can be layer on top of Relay
Needs to be stateful

Example: Amazon SQS

© 2015 Gregor Hohpe www.EnterpriselntegrationPatterns.com 99

Scatter-Gather (Aggregator)

How can a participant solicit responses from a number of participants

without connecting to all of them
Request

esponse

|
|

Requestor Scatter-Gather Providers

Widespread business model, e.g. “Aggregators”

© 2015 Gregor Hohpe www.EnterpriselntegrationPatterns.com

100

Resource Management

Automatic Expiration

Register N “Lease” model
Lease

(Renew Interval)
At

Renew Interest >

Heartbeat / keep-alive
Subscriber has to renew actively

: Example: Jini
Subscriber Provider

Renewal Request

Register | “Magazine Model”
Renewal Request}At Subscriber can be simple
<Rene\,\,a| Confirm | Provider has to manage state for
each subscriber

Subscriber Provider

© 2015 Gregor Hohpe www.EnterpriselntegrationPatterns.com 101

REST Conversations

» Simpler transport protocols are more likely to hold conversations
» Loose coupling generates conversations: discovery, negotiation
« HTTP has built-in conversation patterns, e.g. 302

201 Created
Location: http://starbucks.example.org/order/1234
Content-Type: application/xml

<order xmlns="http://starbucks.example.org">
<drink>Tlatte</drink>
<cost>3.0</cost>
<next xmlns=
rel="http://starbucks.example.org/payment"
uri=" http://starbucks.example.org/payment/order/1234"
type="application/xml1" />
</order>

Pautasso et al:
Modeling RESTful Conversations with Extended BPMN Choreography Diagrams

© 2015 Gregor Hohpe www.EnterpriselntegrationPatterns.com 102

http://example.org/state-machine

Conclusion

Conclusions

* Enterprise Integrations is more than messaging

* Enterprise Integration needs multiple pattern languages

« Good patterns languages are timeless, but difficult to make
« A good notation is a critical element of a pattern language
 Follow evolution of conversation patterns

@ghohpe, #ealpatterns

eaipatterns.com
eaipatterns.com/patterns/conversation

© 2015 Gregor Hohpe www.EnterpriselntegrationPatterns.com 104

