
Agile EAI

November 2002

Martin Fowler

Gregor Hohpe

Copyright ThoughtWorks, Inc. 2002 Page 1

Abstract
Enterprise Application Integration (EAI) is a top priority in many enterprises. Requirements for improved customer

service or self-service, rapidly changing business environments and support for mergers and acquisitions are major

drivers for increased integration between “stovepipe” systems. However, despite increasingly sophisticated EAI suites,

enterprise integration remains difficult. Technical, business and political challenges require EAI implementations to be

carefully planned, but adaptable to inevitable change.

The apparent dichotomy between careful planning and the ability to absorb changes has been the subject of much

discussion in the world of application development. In the past years, a new set of development methods referred to as

“Agile Methods” has garnered a lot of attention. Agile Methods are founded on the realization that long-term

predictive planning is not appropriate for software development efforts supporting today’s business environments.

These new methods combine disciplined development methods with the ability to absorb change throughout the

development process.

This article examines how the notion of agile software development can benefit integration projects. It examines four

best practices proposed by Agile Methods and their applicability in the EAI world.

EAI Challenges
Enterprise integration efforts are as vital to today’s enterprises as they are difficult. Enterprise integration by definition

has to deal with multiple applications running on multiple platforms in different locations. Current EAI suites offer

good solutions to multi-platform, multi-language integration and provide pre-built adapters to most common packaged

business applications. However, it turns out that the technical infrastructure presents only a small portion of the EAI

complexities. The true challenges of EAI implementations span far across business and technical issues.

Enterprise integration requires a significant shift in corporate politics. Business applications generally focus on a

specific functional area, such as Customer Relationship Management (CRM), Billing, Finance, etc. In most instances,

the business and IT groups are organized along the same functional areas. Successful enterprise integration requires

communication and sharing of responsibilities across units. Application groups no longer control a specific application

because the application is now part of an overall flow of integrated applications and services.

Naturally, application integration efforts touch many business and technical aspects within the enterprise. EAI projects

require business process modeling at a wider scope than most single application deployments. At the same time, EAI

projects also require a significant number of low-level technical developments efforts that generally require more

diverse skill sets than application developments efforts. Being able to bridge the gap between facilitating high-level

business process decisions and resolving low-level technical issues may be the single most important factor to EAI

ThoughtWorks® is a registered service mark of ThoughtWorks, Inc. in the United States and/or other countries. All other product

and company names and marks mentioned in this document are property of their respective owners and are mentioned for

identification purposes only.

Copyright ThoughtWorks, Inc. 2002 Page 2

success.

A number of new technologies have promised to make enterprise integration easier. One of those technologies is

XML. The wide adoption of XML provides a generally accepted data representation layer that allows us to transfer

data from one application to another in a platform and language independent manner. However, the frequent claim that

XML is the ‘Lingua franca” of system integration is somewhat misleading. Standardizing all data exchange to XML

can be likened to using a common alphabet, such as the Roman alphabet. A common alphabet can still represent many

languages and dialects, which cannot be readily understood by readers. The same is true in enterprise integration. The

existence of a common presentation (e.g. XML) does not imply common semantics. The notion of “account” can have

many different semantics, connotations, constraints and assumptions in each participating system. Resolving semantic

differences between systems proves to be a particularly difficult and time-consuming task because it requires

significant business and technical decisions to be made. Also, there are not many tools available to aid with the

semantic mapping.

While developing an EAI solution is a difficult task in itself, operating and maintaining such a solution may be even

more daunting. The mix of technologies and the distributed nature of EAI solutions make deployment, monitoring, and

trouble-shooting a complex task that requires a combination of skill sets. In many cases, these skill sets do not exist

within IT operations or are spread across many different individuals. Anyone who has been through an EAI

deployment can attest to the fact that EAI solutions are a critical component of today’s enterprise strategies, but make

IT life harder, not easier.

Agile Methods
Traditionally, software engineering efforts have responded to complexity and uncertainty with an exhaustive up-front

planning phase. These predictive methods were based on the presumption that rigorous up-front planning is ultimately

able to eliminate execution uncertainty. As a result, many projects dove into “analysis paralysis” and created huge

requirements and design specifications, just to find that during the project execution changing requirements and new

findings threatened to impact the carefully crafted project plan. In many occasions, the result was a cancelled project, a

delayed delivery or delivery of a system that did not meet the business needs. Many project managers learned the hard

way that “Users do not know what they want until you give them what they asked for."

Recently, a new family of development methods, referred to as “Agile Methods”, took a new approach to project

management. Recognizing the inability to eliminate change and uncertainty in a business environment, Agile Methods

adjust the development process such that it is able to absorb change and uncertainty. The underlying values of agile

development methods are represented in the following “Agile Manifesto” 1:

Copyright ThoughtWorks, Inc. 2002 Page 3

Agile Methods value:

Individuals and Interactions over Process and Tools

Working Software over Comprehensive Documents

Customer Collaboration over Contract Negotiation

Responding to Change over Following a Plan

This means, while Agile Methods value the items on the right, they value the items on the left more. For example,

while design documentation is important, when faced with an either-or decision, Agile Methods value working

software over a stack of papers. Agile Methods are certainly not suited for every type of project. Pacemakers and

missile control systems do tend to have the benefit of stable requirements and are best served by a rigorous up-front

planning and design effort. On the other hand, most business applications are driven by market forces and demands and

are therefore subject to constant change. For these projects, Agile Methods provides a more flexible process, which

can absorb change at a higher rate than traditional methods.

Agile EAI
Agile Methods have demonstrated impressive success stories in the world of enterprise application development2.

Enterprise integration projects are characterized by a similar or even greater level of complexity and uncertainty than

enterprise applications. Additionally, integration projects increasingly contain significant application or business logic.

So how can some of the benefits of Agile Methods be brought to bear on integration projects?

Agile Methods consist of a collection of best practices that have been proven to support the need to absorb change

while delivering a high-quality solution. Many of the practices can be applied in the world of application integration

with small modifications:

Iterative Development

Many projects end in the proverbial death march. Most of the time, this crunch near the end of the project occurs

because during the final testing and deployment, all the bad surprises come to daylight: the piece of code that was 90%

complete a few weeks ago is still not done. The users realize that a feature works differently than they had expected

and the module that was slipped in at the last minute caused defects in other parts of the program. As much as we hate

this final part of the project, it does help uncover many problems and provides us with an accurate read on the health of

the project. If we could go through this final phase more frequently, chances are that it would be much less painful and

would give us a more accurate read on the actual project progress. Developing and deploying a solution in multiple

iterations allows us to do exactly that.

Developing in multiple, shorter iterations realizes a number of additional benefits. Releasing a limited set of

functionality early allows users to see a part of the total solution and to provide feedback throughout the development

cycle. This significantly reduces the risk of missing critical features or delivering features that are no longer required.

It may also allow business users to start realizing business benefit sooner. In addition, iterative development lets

Copyright ThoughtWorks, Inc. 2002 Page 4

developers and architects familiarize themselves with the specifics of the systems that are to be integrated within the

context of a small piece of functionality. We can think of it as the “Hello World” of EAI.

The benefits of releasing functionality in multiple iterations applies to enterprise integration just as well as it does to

application development. The key is to identify meaningful subsets of functionality that can be reviewed by the users.

Similar to application development, there are a number of design decisions that have to be made at the beginning and

cannot be significantly changed throughout the iterations. This includes fundamental architectural decisions such as

naming standards and the underlying network architecture. These fundamentals are usually defined in a so-called

discovery phase that precedes the first iteration.

Simple Design / Evolve

The concept of simplicity goes hand-in-hand with iterative development. In order to deliver value in a shorter amount

of time, the solution has to be simple in nature. Rather than developing a huge framework over six months, we solve a

specific problem in a few weeks and demonstrate that we understand what the business needs.

Simple does not mean unsophisticated or sloppy. Simple means that we attack the problem straight on and do not

create an enormous infrastructure to support a minuscule portion of functionality. Building infrastructures is fun. It

lets the developers work in an idealized world of elegant concepts and generic solutions to theoretical problems. We

have seen many very, very beautiful infrastructures – works of art! Well, that was usually at the end of the

“infrastructure phase” before the ugly reality of vague and changing business requirements marred the beautiful

picture. What a shame. By growing the infrastructure as the functionality grows, we can ensure that the infrastructure

supports what is really needed by the business. In the end, an infrastructure that was properly evolved leads to a better

result than a beautiful ivory-tower infrastructure that was subsequently bastardized to meet real requirements.

How can an infrastructure be evolved without deteriorating into a complete mess? Two key factors: discipline and

frequent testing. Evolving the infrastructure and functionality does not imply hacking away. To the contrary, a more

disciplined approach is needed – especially in the world of EAI that is ripe with loosely coupled, cross-language, cross-

platform interactions. Before we start developing, crucial standards have to be established: subject / queue / channel

naming, component naming, documentation standards. As the system evolves, these standards and guidelines will

allow developers to get a quick and accurate read of the system at any point in time and allows them to make changes

that are in line with the overall solution philosophy.

Automated Testing / Integration

The second key factor to allow evolution is frequent testing. In order to keep the whole development team from testing

eight hours a day, these tests better be automated. Running a complete test suite should be as simple as clicking a

button and reviewing the report later on. In the world of custom application development, the suite of public domain

‘xUnit’ frameworks have become the tools of choice for automated unit testing. These frameworks execute all test

Copyright ThoughtWorks, Inc. 2002 Page 5

cases and compare actual results with desired results. Any deviations are reported. If all test cases succeed, we see the

infamous ‘green bar’ (the progress bar turns red if a test case fails)3.

It turns out that effective unit testing is more difficult in EAI development than in application development for a

number of reasons:

• The minimal unit of test in the EAI world tends to be larger and more data driven than in application development.

Testing a single method of a Java class generally requires a moderate amount of preparation. On the contrary,

testing a single integration function may require complex data setup inside multiple packaged applications.

• Most application testing is synchronous. A specific function is called and the results are compared to the expected

result. EAI functions are often times asynchronous. An EAI test case may produce results in an asynchronous

manner. Results may arrive later or not at all.

• EAI environments are inherently heterogeneous. In an application development environment, a Java-based tool

such as jUnit can cover the vast majority of unit test cases. The EAI solution may span across multiple languages

and platforms, including mainframe legacy systems. This makes the capture and comparison of test results much

more difficult.

• Testing tools are not yet readily available. Many EAI vendors focused more heavily on integration functionality

than testing support. In many cases, testing tools have to be created and are vendor specific. Some integrators

(such as ThoughtWorks) have created proprietary testing tools. When you select an integrator to assist with EAI

implementations, ask them about their approach to testing and specific tools they can bring to bear.

Close Customer Collaboration

Continuous customer collaboration is another critical enabler to iterative development and short feedback cycles. This

successful practice is arguably easier to perform in front-end application development than in enterprise integration,

because infrastructure software is inherently difficult to demonstrate. Many of us may have seen an EAI demo where

some person clicks a button on one machine and the screen changes on the machine next to it. While interesting to

watch, this demonstration may not move us to spend a six or seven digit amount on an enterprise EAI initiative.

On the other hand, the need to demonstrate business features to a customer frequently reminds the integration teams of

the ultimate deliverable -- business value. As such, it is a critical metric for the EAI development teams to come out

of the dark hiding places of infrastructure retrofits and measure their success by the value that was provided to the

business.

Conclusions
Enterprise integration is a critical part of today’s enterprise strategies. Integration projects are equally or even more

difficult than most application development efforts. This difficulty stems from complexities in both the business and

technical domains. Given the spotty track record of large application development efforts, embarking on a complex

Copyright ThoughtWorks, Inc. 2002 Page 6

integration project may scare many business sponsors and IT departments. Agile development methods have offered

the development communities some relief and demonstrated critical project successes. With some modification, many

of the principles and techniques used in agile software development can be applied to the world of enterprise

integration and help make the next integration project a successful one.

Authors
Martin Fowler is the Chief Scientist at ThoughtWorks, Inc, an Internet systems delivery and consulting company.

Contact him at fowler@acm.org.

Gregor Hohpe leads the Enterprise Integration Services practice at ThoughtWorks, Inc., a provider of application

development and enterprise integration services. For the past four years, he has been helping clients around the world

design and implement enterprise integration solutions. He can be contacted at ghohpe@thoughtworks.com.

References
1 http://www.agilealliance.com

2 Caterpillar digs into Agile development methods:

http://www.computerworld.com/softwaretopics/software/appdev/story/0,10801,67016,00.html

3 http://www.junit.org

mailto:fowler@acm.org
mailto:ghohpe@thoughtworks.com

	Abstract
	EAI Challenges
	Agile Methods
	Agile EAI
	Iterative Development
	Simple Design / Evolve
	Automated Testing / Integration
	Close Customer Collaboration

	Conclusions
	Authors

