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Introduction 
 
This pattern belongs to an evolving pattern language called “Patterns of System 
Integration with Enterprise Messaging”.  The pattern language describes how systems are 
developed using the capabilities of Enterprise Messaging software like IBM MQ Series, 
Sonic Software’s SonicMQ, or Microsoft Message Queue.   

The place of this pattern in the language 
 
This pattern is part of a largely undeveloped section of the pattern language on 
application architectures that use messaging. These patterns are more finely-grained, and 
less generally applicable than the other patterns in this language, documented in [Woolf] 
and [Hohpe].   Other patterns in this section that have not yet been published include 
Logging to a Queue, where a logging infrastructure is built using Enterprise Messaging 
and Local and Remote Update, where we discuss how to keep information held both in a 
local (distributed) database and a remote (mainframe) database in synchronization using 
Enterprise Messaging. 
 
This pattern refers to many of the patterns described in [Woolf]. A diagram of some of 
the relationships that this pattern has with other patterns in the language is shown below 
(Figure 1: Pattern Relationships): 
 



Messaging Point-to-Point Publish-Subscribe Data Type Channel Malformed 
Message Channel 

Command Message 
Document Message Event Message Reply Message 

Reply Specifier Correlation Identifier Message Sequence Message Expiration 

Polling Consumer Event-Driven Consumer Message Throttle 

Transactional Client Competing Consumers Message Dispatcher 

Message 
Selector  

Pipes And Filters 
Messaging 

Message Translator Canonical Message 
Data Model 

Data Format 
Flexibility 

Message Router Message Bridge Message Bus 

Propagate Cache Updates Logging to a Queue Local and Remote Update 

 
Figure 1: Pattern Relationships  



 

Propagate Cache Updates 
 
My application is distributed over several physical machines for scalability.  It uses a 
database for object persistence, but many of the queries to the database take a long time 
to execute due to the complexity of the queries.  My database queries cannot be further 
optimized, so it is impossible to gain more speed through database tuning approaches.  I 
would like to cache my data on each machine; however, I cannot cache all of my data 
locally since the data does change, and the values in each cache will begin to differ from 
the database and each other over time.   
 
How can I connect a set of distributed caches such that updates are propagated 
across the caches and the same values can be returned from queries on any of the 
caches? 
 
Many systems are designed with a set of data caches to improve performance.  For 
instance, in a system built using Enterprise Java Beans (EJBs) you may use Entity Bean 
Option A caching [EJB], or we keep value objects in memory in a singleton [Brown].  
However, each of these options have the same drawback; for instance, in Option A 
Caching, once a CMP EJB is read from the database, the values held in memory do not 
change, even though the corresponding values in the underlying database may change.  
 
Most distributed HttpSession schemes also are a type of distributed data cache. The 
similarity of each of these approaches has led to the recommendation of a specific API 
for caching, the JCache API, as JSR-107 [JCache].   Unfortunately, the cache is not the 
“system of record’ for most of this information. In almost all cases, the ultimate place 
where data is stored is in a database, thus creating a situation where the information in the 
database and the information in an in-memory cache can drift out of synchronization.  
When the database is updated by one machine, if a query is run against the (older) data in 
the cache on another machine it will return the wrong value. 
 
Some systems have been built such that the database itself is responsible for updating the 
set of distributed caches.  These systems use database triggers to force the update of each 
cache.  The problem with this approach is that it is not standards-based and thus is not 
portable.  Thus a system built using Oracle database triggers will not work if the database 
is changed to DB2 or SQL Server.  Also, not every database (for instance some of the 
open-source databases like MySQL) supports advanced database features like triggers. 
 
Thus, we need a way to force an update of each cache whenever an object is changed in 
any cache.  Therefore: 
 
Propagate cache updates using Publish-Subscribe messaging such that whenever a 
change is made to an object in one cache, that server will to notify all other caches 
that the object has been changed.  
 



If a cache receives a notification it can choose to refresh its values from the database 
(shared) version at notification time, or it may simply mark it as "dirty" and read it back 
from the database whenever anyone asks for it. The structure of these solutions is shown 
below (Figure 2: Distributed Cache Update).   Another option would be to update the 
cache from the message. However, this is not as desirable as reading from the DB since it 
would require object hydration from a message instead of from the database; this both 
complicates the messaging code, and also increases the amount of message traffic in the 
system as a whole since the entire object, rather than a notification, must be sent in the 
queue.   
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Figure 2: Distributed Cache Update 

 
It is important to keep the granularity of the cache high such that the total number of 
messages flying across the messaging system is kept to a minimum.  In many cases, this 
can be achieved by sending out only notifications about the "root" object of an object 
graph whenever any part of the graph changes. Within a transaction you hold off 
notification until all updates complete so that we can remove redundant messages.  
Likewise, it is desirable to have the “put” onto the queue be part of the same transaction 
as the update to the database (e.g., make the cache a Transactional Client) so that the 
state of the database does not diverge from the known state of the caches (Figure 2 shows 
the database update and the message being part of the same transactional context, labeled 
“Transaction Context 1”).  
 



You can reduce the amount of unnecessary processing that each cache must perform in 
handling update messages for objects it does not contain by introducing multiple topics 
(one for each "root" type).  The cache could use Message Selectors to filter out 
notifications about objects they are not interested in, but that does not reduce the total 
number of messages that are placed on the topic – it only reduces the amount of 
processing each client will perform. 
 
It is also crucial that this solution only be used in cases where it is not crucial that all 
caches remain perfectly synchronized at all times.  This is because the solution 
necessitates the use of at least two transactions; one on the “notifying” cache side, and 
another for each of the “notified” caches. This is shown in Figure 2 where the receiving 
end (Server N) is shown to be executing in a separate transactional context from the 
original transactional context.  Thus, there can be a period of time while updating is 
occurring in which queries to one of the outlying caches can return stale data.  There is 
also the possibility of undeliverable messages, incorrect update processing, and other 
situations that can render this solution less than 100% reliable. However, in most 
applications, so long as all final decisions depend solely upon the state of the database of 
record the unreliability of this solution can be tolerated. 
 
This approach has been used successfully in commercial Java application server 
implementations.  For instance, IBM WebSphere Application Server 5.0 uses this 
approach in synchronizing its HttpSession caches. Likewise, this is a feature of 
WebLogic Application Server 6.1.   SpiritSoft sells a product called SpiritCache 
[SpiritSoft] that implements a JSR 107-compatible cache using this pattern that will work 
with many application servers.   
 
Finally, this approach has been implemented in end-user applications for several large 
financial web sites by IBM Software Services.  A specific implementation of this pattern 
restricted to EJB Entity Bean caching has been previously documented in [Rakatine] as 
the Seppuku pattern. 
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