
Toward Integration

84 Published by the IEEE Computer Society 1089-7801/07/$25.00 © 2007 IEEE IEEE INTERNET COMPUTING

Let’s Have a Conversation

C ommunicating inside a single program is
trivial: one method calls another, the result
comes back, and the calling method contin-

ues. If anything goes wrong, an exception is
thrown. If the program aborts altogether, both
caller and callee share the same fate, making the
interaction an all-or-nothing affair. This kind of
binary outcome is a welcome behavior in the pre-
dictive world of computer software, especially one
that’s based on 1s and 0s.

In the land of loosely coupled distributed sys-
tems, things are a little more complicated. Using
procedure call semantics for distributed systems is
generally considered a bad idea, so systems should
communicate in a more loosely coupled way —
preferably by exchanging messages. Message-
based communication results in a simple interac-
tion model and, if used with message queues,
temporal decoupling between sender and receiv-
er: splitting the request–response interaction into
two separate messages means that callers don’t
have to sit around waiting for response messages.

When designing such an asynchronous solu-
tion, a nagging question typically surfaces before
too long: what should the caller do if the response
message never comes? To be precise, this question
contains two separate considerations. First, what
does never mean? Because computer systems don’t
inherently understand the notion of infinite,
“never” is generally represented as some time peri-
od that the user or application considers long
enough. Second, what if never arrives and the
sender still hasn’t received a message? This could
happen for various reasons — a glitch in the com-
munication could cause the request or reply mes-
sage to be lost, for instance, or the server could
consume the request message and then crash
unexpectedly without sending a reply. In any case,
the sender has essentially two choices: give up or
resend the original request message.

Try It Again
I actually find it kind of ironic how popular the
try-it-again approach is in the generally very pre-
cise and predictive field of computer science. If
something doesn’t work, even the most rational
computer scientist is inclined to just try it again.
Even more shockingly, things often do work the
second time around!

Let’s assume the requestor decides to resend the
request message. This brings several new consid-
erations into play. For example, if the time out
resulted from a lost response message, the service
provider now receives the same request message a
second time. Yet, in many cases, the provider
shouldn’t perform the requested action a second
time — that is, it must be an idempotent receiver.1

To be idempotent, a receiver must be able to dis-
tinguish a resent message from a distinct request
that happens to look the same. The best way to
identify messages is to equip each with a unique
correlation identifier,1 a magic number included in
the message. A resent request would thus have the
same correlation identifier, enabling the provider
to identify it as a duplicate. The provider would
then skip the requested operation and simply
return the previous response message. Allowing
requestors to resend messages requires that both
service consumer and provider keep some state.
The consumer needs to keep the request message
around to be able to resend it, and an idempotent
provider must keep a list of received message IDs
together with the original responses.

However, the service consumer has to deal with
duplicate messages as well. For example, the
provider might have sent a response through a
message queue just as the consumer gave up wait-
ing. In that case, the consumer resends the request
message and receives the original response a frac-
tion of a second later. However, a second response
message, based on the resent request, will arrive a

Gregor Hohpe • Google

Editor : Steve Vinoski • v inosk i@ieee .org

little later. Given that the consumer
has already processed the first
response, this message should proba-
bly be ignored, thus requiring the con-
sumer to be idempotent as well.

So far so good, but what happens if
the consumer still receives no response
after resending the request message? It
might be tempting to resend the mes-
sage once more, but what if the
response never arrived because this
particular request crashed the server?
Repeatedly resending such a “poison
message” will just continue to crash the
service provider. Therefore, the con-
sumer should limit the number of
retries and eventually give up.

Conversations
Suddenly, the interaction between
service consumer and service provider
looks much more complicated. Both
parties have to track the interaction
state, have time-out mechanisms,
count the number of retries, and elim-
inate duplicate messages. Instead of
simply invoking a method, the two
systems are engaged in a conversation,
an exchange of related messages over
time. The concept of a conversation
between services is analogous to con-
versations in real life. Humans fre-
quently interact through asynchronous
message exchange, as when leaving a
voice mail, mailing a letter, or sending
an email. These conversations can
span hours, days, or months, and
humans deal with many of the same
issues, including duplicate messages (“I
really need that TPS report”), messages
crossing in transit (“Ignore this notice
if you’ve already sent your payment”),
and the need to coordinate multiple
independent resources (“You got the
money? You got the goods?”).

Because multiple conversations
tend to occur at the same time (in real
life as well as in service-oriented archi-
tectures), messages are associated with
a conversation through a correlation
identifier (such as an order number) or
context (the sender’s name or subject
line in an email, for example). When

receiving a message, a participant can
use these identifiers to recover the
appropriate conversation’s state and
execute the next step, which often
includes sending a follow-on message.

Describing Conversations
An expressive service should provide
sufficient information to ensure smooth
interaction between the provider and
consumers. This includes a description
of which conversations it can support.
Is the consumer allowed to resend a
request, for example? Does the con-
sumer have to be prepared to receive
more than one response message?
More generally, in which order can
service operations be invoked? A com-
prehensive service contract should be
able to answer such questions in addi-
tion to describing the message data
format (schema).

Yet, defining a conversation policy
— that is, a description of all legal con-
versations — is nontrivial. Even my
fairly simple example required many
words to describe what’s allowed and
disallowed in the interaction. Some of
those conversation rules extended
beyond the sequence of messages being
sent or received and touched on what
the conversation partner is expected to
do with a specific message (ignore
duplicate responses, for instance).

Luckily, few things in the service-
oriented world are entirely new, so we
can expect to find some prior work
that has addressed similar problems.
In fact, most communication proto-
cols include conversation rules for the
communicating systems to observe.
As Figure 1 illustrates, for example,
TCP uses a three-way handshake to
establish connections; the three-way
handshake conversation defines
which messages are sent, and in what
order. Unfortunately, anyone who has
spent time inside the network stack’s
transport and network layers can
attest to the fact that protocol design
isn’t a simple matter. Given that the
communicating parties typically run
on different machines, issues such as

message-travel delays and dead-lock
situations require careful considera-
tion. This is one reason that most pro-
tocol definitions are fairly static, well
understood, and strictly implemented.
In the world of application services,
however, we can expect different
providers to define unique application-
specific conversation policies. To
make matters worse, such policies will
likely change over time as the servic-
es evolve.

We quickly realize that conversation
policies are a valuable aspect of a serv-
ice contract but can be difficult to
describe. Luckily, this problem hasn’t
escaped the various standards and spec-
ification committees, so we have sever-
al approaches from which to learn.

Message-Exchange Patterns
Given the challenges in creating a cor-
rect conversation policy, one approach
would be to simply enumerate a few
common conversations and have serv-
ices choose which to implement.
WSDL follows this approach with the
concept of message-exchange patterns
(MEPs). WSDL 1.1 defines four trans-
mission primitives, comprising
sequences of input and output opera-
tions: one-way, request–response,
solicit–response, and notification.2

WSDL 2.0 defines additional MEPs,
and lets services define their own.3 Yet,
the WSDL specification doesn’t include
a language to describe the conversa-
tion policy associated with each MEP;
it uses plain English, which means that
humans have to interpret and imple-
ment these policies.

MAY • JUNE 2007 85

Let’s Have a Conversation

Figure 1.TCP's Three-way Handshake.
This simple conversation defines which
messages have to be exchanged in
which order.

SYN

SYN-ACK-ACK

Client Server

SYN-ACK

86 www.computer.org/internet/ IEEE INTERNET COMPUTING

Toward Integration

Choreography
A conversation policy primarily con-
cerns what happens between commu-
nicating parties — that is, who is
allowed (or expected) to send messages
to whom and in what order. At any
point, we can consider the conversation
to be in a specific state. For example, a
simple request–response conversation
has a single active state: “waiting for
response.” The conversation enters this
state when the client sends a request
message and leaves it when the service
responds. If the client is allowed to
retry, the conversation could also enter
a state such as “two requests sent but
still awaiting response.”

As Figure 2 illustrates, choreogra-
phy tracks the conversation state
according to the messages being
exchanged. The conversation state
description takes a neutral observer’s
viewpoint. This “choreographer” is
purely a logic construct — passing all
messages through a central observer
would clearly be undesirable in a
highly distributed environment. Thus
the conversation-state transition chart
defined by the choreography is only a
specification, rather than an exe-
cutable language. But each individ-
ual's perspective can be derived from
the neutral observer's view of the con-
versation, ensuring that all partici-
pants abide by the global rules. A
client participating in a request-
response conversation, for example,
can easily derive that it must send a

request message to start the conversa-
tion and that a response messages
ends it.

Various specifications have
embraced the choreography model
over the past few years to describe
conversations, the strongest contender
being the Web Services Conversation
Description Language (WS-CDL).4

Choreography’s strength is that it
extends well beyond simple two-party
conversations. However, because the
choreography isn't executable it is
conceptually rather abstract and can
be more difficult to test and debug.

Orchestration
By pretending to observe a conversa-
tion between equal parties from
“above,” choreography assumes a cer-
tain symmetry between those commu-
nicating. However, most service
contracts view the conversation from
the provider’s perspective, establishing
rules that any potential consumer must
observe. Concentrating on the service
provider makes it easier to describe and
enforce these rules. For example, a
process containing send and receive
primitives executing inside the service
can orchestrate the interaction between
the service, its consumer, and potential
collaborators (see Figure 2). Consumers
can also inspect this process definition
to determine what messages they can
send to the service, and which ones
they can expect in response.

The Web Services Business Process

Execution Language (WS-BPEL)5 is
currently the most popular language
for defining processes in SOA environ-
ments. The BPEL specification includes
abstract process templates, which
describe the interaction between the
process and conversation partners. The
actual process executed by the service
fills in this skeleton template with
activities to execute incoming requests,
compose response messages, and so on.

Rules
Both WS-CDL and WS-BPEL are based
on a state-based conversation model,
albeit from different viewpoints. In
many cases, however, spelling out a
complete state-transition chart for a
conversation can be tedious. It might
seem more natural to define a set of
rules that the conversation must obey
— for example, “after sending an
invoice, a payment must follow” or
“whenever the service receives a mes-
sage, it replies immediately with an
acknowledgment.” Naturally, such rule
sets’ usefulness hinges on the vocabu-
lary that the rules language supports
and the ability to verify that a running
system complies with the rules. For
example, it would be difficult to verify
a rule such as, “when the consumer
receives a duplicate response, it
ignores it.”

The Soap Service Description Lan-
guage (SSDL; www.ssdl.org/docs/v1.3/
html/Rules SSDL Protocol Framework
v1.3.html) supports a declarative rule-
based approach. This rules language
describes the relationship between
messages — for example, “if an order
was received, and no invoice has been
sent in response, an invoice message is
expected.” These rules become part of
the public service contract supported
by SSDL.

Conversation Patterns
The standard specifications define lan-
guages to express conversation poli-
cies. These languages primarily target
machines, and it’s beyond the stan-
dards committees’ scopes to provide

Figure 2. Choreography and orchestration. Choreography specifies the
conversation from a neutral obeserver’s viewpoint, whereas orchestration defines
a process to be executed by the service provider.

Choreography Orchestration

Service

Participant Participant Consumer

guidance on designing robust conver-
sation policies that avoid deadlock sit-
uations and the like. Because
designing conversation policies isn’t
something most developers are experi-
enced in, design guidance is often as
important as the conversation descrip-
tion language’s syntax. A catalog of
common conversations can fill this
gap, as long as it goes beyond simply
listing conversations (a la MEPs) to
elaborate on the design trade-offs and
assumptions incorporated in the spe-
cific conversation policy, when to use
it, and when not to.

Design patterns have established
themselves as an excellent tool for cap-
turing knowledge and designing guid-
ance that helps developers learn from
others’ experiences. Current work in
conversation patterns6,7 aims to create
a human-readable language for conver-
sation policies and to support service
developers in making intelligent deci-
sions when designing conversations.

L ike most new tools, a conversation
policy can turn into the proverbial

hammer looking for nails. Service
developers should keep in mind that
conversations typically introduce an
additional form of coupling — the
more complex the conversation rules,
the more tightly coupled service con-
sumer and service provider tend to be.
Furthermore, developers should avoid
recreating lower layers of the commu-
nication stack inside the application
layer. For example, protocols such as
TCP and many middleware products
already address duplicate packets,
message resending, and other issues.
Recreating this behavior at the service
layer complicates the conversation
without added benefit.

A precise definition of the conver-
sations a service supports is a useful
ingredient of an expressive service
contract. However, designing conver-
sation policies is neither a simple task,
nor one that developers are usually
familiar with. In addition to specifica-

tions and standards, we should start
growing a body of knowledge on
designing and implementing conver-
sations. Real life is rich with examples
of complex conversations and can
serve as inspiration for cataloging use-
ful conversation protocols.

References

1. G. Hohpe and B. Woolf, Enterprise Integra-

tion Patterns, Addison-Wesley, 2003; www.

eaipatterns.com.

2. E. Christensen et al., “Web Services Descrip-

tion Language (WSDL) 1.1,” W3C note, 15

Mar. 2001; www.w3.org/TR/2001/NOTE-ws

dl-20010315#_porttypes.

3. “Web Services Description Language

(WSDL), version 2.0 part 2: Adjuncts,” W3C

candidate recommendation, 27 Mar. 2006;

www.w3.org/TR/2006/CR-wsdl20-adjuncts

-20060327/#meps.

4. N. Kavantzas et al., eds., “Web Services

Choreography Description Language, ver-

sion 1.0,” W3C candidate recommendation,

9 Nov. 2005; www.w3.org/TR/ws-cdl-10/.

5. P. Yendluri et al., eds., “Web Services Busi-

ness Process Execution Language,” Oasis

committee draft, 17 May 2006; www.oasis

-open.org/committees/document.php?

document_id=18714.

6. A. Barros, M. Dumas, and A.H.M. ter Hofst-

ede, Service Interaction Patterns: Towards a

Reference Framework for Service-Based

Business Process Interconnection, tech.

report FIT-TR-2005-02, Queensland Univ. of

Technology, Mar. 2005.

7. G. Hohpe, “Workshop Report: Conversation

Patterns,” Dagstuhl Seminar Proc. 06291:

The Role of Business Processes in Service

Oriented Architectures, F. Leyman et al.,

eds., Internationales Begegnungs und For-

schungszentrum fuer Informatik (IBFI),

2006; http://drops.dagstuhl.de/opus/front-

door.php?source_opus=828.

Gregor Hohpe is a software architect with

Google. His interests focus on asynchronous

messaging and service-oriented architec-

tures. He is coauthor of Enterprise Integra-

tion Patterns (Addison-Wesley, 2003) and

speaks regularly at technical conferences

around the world. Find out more about his

work at www.eaipatterns.com.

MAY • JUNE 2007 87

Let’s Have a Conversation

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 1.8)
 /CalRGBProfile (Apple RGB)
 /CalCMYKProfile (U.S. Sheetfed Uncoated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF0049004500450045002000580070006c006f0072006500200073007000650063007300200066006f0072002000440069007300740069006c006c0065007200200036002e0020004d0056>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

