
 

57

 

Messaging 
Systems

 

Chapter 3

 

Messaging Systems

 

Introduction

 

In Chapter 2, “Integration Styles,” we discussed the various options for connect-
ing applications with one another, including 

 

Messaging

 

 (53). Messaging makes
applications loosely coupled by communicating asynchronously, which also makes
the communication more reliable because the two applications do not have to be
running at the same time. Messaging makes the messaging system responsible for
transferring data from one application to another, so the applications can focus
on what data they need to share as opposed to how to share it.

 

Basic Messaging Concepts

 

Like most technologies, 

 

Messaging

 

 (53) involves certain basic concepts. Once
you understand these concepts, you can make sense of the technology even
before you understand all of the details about how to use it. The following are
the basic messaging concepts. 

 

Channels

 

—Messaging applications transmit data through a 

 

Message Chan-
nel 

 

(60), a virtual pipe that connects a sender to a receiver. A newly installed
messaging system typically doesn’t contain any channels; you must deter-
mine how your applications need to communicate and then create the chan-
nels to facilitate it.

 

Messages

 

—A 

 

Message 

 

(66) is an atomic packet of data that can be transmit-
ted on a channel. Thus, to transmit data, an application must break the data
into one or more packets, wrap each packet as a message, and then send the
message on a channel. Likewise, a receiver application receives a message and
must extract the data from the message to process it. The message system will

 

Hohpe_ch03.fm  Page 57  Monday, September 29, 2003  10:37 AM



 

58

 

C

 

HAPTER

 

 3 M

 

ESSAGING

 

 S

 

YSTEMS

 

Introduction

 

try repeatedly to deliver the message (e.g., transmit it from the sender to the
receiver) until it succeeds.

 

Pipes and Filters

 

—In the simplest case, the messaging system delivers a mes-
sage directly from the sender’s computer to the receiver’s computer. How-
ever, certain actions often need to be performed on the message after it is sent
by its original sender but before it is received by its final receiver. For exam-
ple, the message may have to be validated or transformed because the
receiver expects a message format different from the sender’s. The 

 

Pipes and
Filters 

 

(70) architecture describes how multiple processing steps can be
chained together using channels.

 

Routing

 

—In a large enterprise with numerous applications and channels to
connect them, a message may have to go through several channels to reach
its final destination. The route a message must follow may be so complex
that the original sender does not know what channel will get the message to
the final receiver. Instead, the original sender sends the message to a 

 

Message
Router 

 

(78), an application component that takes the place of a filter in the

 

Pipes and Filters 

 

(70) architecture. The router then determines how to navi-
gate the channel topology and directs the message to the final receiver, or at
least to the next router.

 

Transformation

 

—Various applications may not agree on the format for the
same conceptual data; the sender formats the message one way, but the
receiver expects it to be formatted another way. To reconcile this, the mes-
sage must go through an intermediate filter, a 

 

Message Translator 

 

(85),
which converts the message from one format to another.

 

Endpoints

 

—Most applications do not have any built-in capability to inter-
face with a messaging system. Rather, they must contain a layer of code that
knows both how the application works and how the messaging system
works, bridging the two so that they work together. This bridge code is a set
of coordinated 

 

Message Endpoint

 

s (95) that enable the application to send
and receive messages.

 

Book Organization

 

The patterns in this chapter provide you with the basic vocabulary and under-
standing of how to achieve enterprise integration using 

 

Messaging

 

 (53). Each
subsequent chapter builds on one of the base patterns in this chapter and covers
that particular topic in more depth. 

 

Hohpe_ch03.fm  Page 58  Monday, September 29, 2003  10:37 AM



 

Introduction

 

I

 

NTRODUCTION

 

59

 

You can read this chapter straight through for an overview of the main top-
ics in 

 

Messaging

 

 (53). For more details about any one of these topics, skip ahead
to the chapter associated with that particular pattern. 

Relationship of Root Patterns and Chapters

MessagingMessaging
Chapter 2:
Integration

Styles

Chapter 3:
Messaging
Systems

MessageMessageMessage 
Channel
Message 
Channel

Pipes and 
Filters

Pipes and 
Filters

Message
Router

Message
Router

Message
Translator
Message
Translator

Message
Endpoint
Message
Endpoint

Chapter 4:
Message 

Construction

Chapter 5:
Message 

Construction

Chapter 3:
Messaging 
Channels

Chapter 4:
Messaging 
Channels

Chapter 5:
Message 
Routing

Chapter 7:
Message 
Routing

Chapter 6:
Message

Transformation

Chapter 8:
Message

Transformation

Chapter 7:
Messaging 
Endpoints

Chapter 10:
Messaging 
Endpoints

Chapter 8:
Systems

Management

Chapter 11:
System

Management

 

Hohpe_ch03.fm  Page 59  Monday, September 29, 2003  10:37 AM



 

60

 

C

 

HAPTER

 

 3 M

 

ESSAGING

 

 S

 

YSTEMS

 

Message
Channel

 

Message Channel

 

An enterprise has two separate applications that need to communicate by using

 

Messaging

 

 (53).

 

How does one application communicate with another using messaging?

 

Once a group of applications has a messaging system available, it’s tempting
to think that any application can communicate with any other application any-
time you want it to. Yet, the messaging system does not magically connect all of
the applications.

Likewise, it’s not as though an application just randomly throws out infor-
mation into the messaging system while other applications just randomly grab
whatever information they run across. (Even if this worked, it wouldn’t be very
efficient.) Rather, the application sending out the information knows what sort
of information it is, and the applications that would like to receive information
aren’t looking for just any information but for particular types of information
they can use. So the messaging system isn’t a big bucket that applications throw
information into and pull information out of. It’s a set of connections that enables
applications to communicate by transmitting information in predetermined,
predictable ways.

Application Messaging 
System

Application

Applications Magically Connected

 

Hohpe_ch03.fm  Page 60  Monday, September 29, 2003  10:37 AM



 

M

 

ESSAGE

 

 C

 

HANNEL

 

61

 

Message 
Channel

 

Connect the applications using a 

 

Message Channel

 

, where one application writes 
information to the channel and the other one reads that information from the 
channel.

 

When an application has information to communicate, it doesn’t just fling
the information into the messaging system but adds the information to a partic-
ular 

 

Message Channel

 

. An application receiving information doesn’t just pick it
up at random from the messaging system; it retrieves the information from a
particular 

 

Message Channel

 

.
The application sending information doesn’t necessarily know what particu-

lar application will end up retrieving it, but it can be assured that the applica-
tion that retrieves the information is interested in the information. This is
because the messaging system has different 

 

Message Channel

 

s for different
types of information the applications want to communicate. When an applica-
tion sends information, it doesn’t randomly add the information to any channel
available; it adds it to a channel whose specific purpose is to communicate that
sort of information. Likewise, an application that wants to receive particular
information doesn’t pull info off some random channel; it selects what channel
to get information from based on what type of information it wants.

Channels are logical addresses in the messaging system. How they’re actually
implemented depends on the messaging system product and its implementation.
Perhaps every 

 

Message Endpoint 

 

(95) has a direct connection to every other end-
point, or perhaps they’re all connected through a central hub. Perhaps several
separate logical channels are configured as one physical channel that nevertheless
keeps straight which messages are intended for which destination. The set of
defined logical channels hides these configuration details from the applications.

A messaging system doesn’t automatically come preconfigured with all of the
message channels the applications need to communicate. Rather, the developers

Sender 
Application

Messaging 
System

Receiver 
Application

Message 
Channel

 

Hohpe_ch03.fm  Page 61  Monday, September 29, 2003  10:37 AM



 

62

 

C

 

HAPTER

 

 3 M

 

ESSAGING

 

 S

 

YSTEMS

 

Message
Channel

 

designing the applications and the communication between them have to decide
what channels they need for the communication. Then the system administrator
who installs the messaging system software must also configure it to set up the
channels that the applications expect. Although some messaging system imple-
mentations support creating new channels while the applications are running,
this isn’t very useful because other applications besides the one that creates the
channel must know about the new channel so they can start using it too. Thus,
the number and purpose of channels available tend to be fixed at deployment
time. (There are exceptions to this rule; see the introduction to Chapter 4,
“Messaging Channels.”)

Something that often fools developers when they first get started with using a
messaging system is what exactly needs to be done to create a channel. A devel-
oper can write Java code that calls the method 

 

createQueue

 

 defined in the JMS

 

A Little Bit of Messaging Vocabulary

 

So what do we call the applications that communicate via a 

 

Message Chan-
nel

 

? There are a number of terms out there that are largely equivalent. The 
most generic terms are probably 

 

sender

 

 and 

 

receiver

 

; an application sends a 
message to a 

 

Message Channel

 

 to be received by another application. 
Other popular terms are 

 

producer

 

 and 

 

consumer

 

. You will also see 

 

pub-
lisher

 

 and 

 

subscriber,

 

 but

 

 

 

they are geared more toward 

 

Publish-Subscribe 
Channel

 

s (106) and are often used in generic form. Sometimes we say that 
an application 

 

listens

 

 on a channel to which another application 

 

talks. 

 

In 
the world of Web services, we generally talk about a 

 

requester

 

 and a 

 

pro-
vider

 

. These terms usually imply that the requester sends a message to the 
provider and receives a response back. In the olden days we called these 

 

cli-
ent

 

 and 

 

server 

 

(the terms are equivalent, but saying “client” and “server” is 
not cool). 

Now it gets confusing. When dealing with Web services, the application 
that sends a message to the service provider is often referred to as the 

 

con-
sumer

 

 of the service even though it sends the request message. We can 
think of it in such a way that the consumer sends a message to the pro-
vider and then consumes the response. Luckily, use of the term with this 
meaning is limited to 

 

Remote Procedure Invocation 

 

(50) scenarios. An 
application that sends or receives messages may be called a 

 

client

 

 of the 
messaging system; a more specific term is 

 

endpoint

 

 or 

 

message endpoint

 

.

 

Hohpe_ch03.fm  Page 62  Monday, September 29, 2003  10:37 AM



 

M

 

ESSAGE

 

 C

 

HANNEL

 

63

 

Message 
Channel

 

API or .NET code that includes the statement 

 

new MessageQueue

 

, but neither code
actually allocates a new queue resource in the messaging system. Rather, these
pieces of code simply instantiate a runtime object that provides access to a
resource that was already created in the messaging system using its administra-
tion tools.

There is another issue you should keep in mind when designing the channels
for a messaging system: Channels are cheap, but they’re not free. Applications
need multiple channels for transmitting different types of information and trans-
mitting the same information to lots of other applications. Each channel requires
memory to represent the messages; persistent channels require disk space as well.
Even if an enterprise system had unlimited memory and disk space, any messag-
ing system implementation usually imposes some hard or practical limit to how
many channels it can service consistently. So plan on creating new channels as
your application needs them, but if it needs thousands of channels or needs to
scale in ways that may require thousands of channels, you’ll need to choose a
highly scalable messaging system implementation and test that scalability to
make sure it meets your needs.

There are two different kinds of message channels: 

 

Point-to-Point Channel

 

s
(103) and 

 

Publish-Subscribe Channel

 

s (106). Mixing different data types on the
same channel can cause a lot of confusion; to avoid this, use separate 

 

Datatype
Channels 

 

(111). 

 

Selective Consumer 

 

(515) makes one physical channel act logi-
cally like multiple channels. Applications that use messaging often benefit from
a special channel for invalid messages, an 

 

Invalid Message Channel

 

. Applica-
tions that wish to use 

 

Messaging

 

 (53) but do not have access to a messaging cli-
ent can still connect to the messaging system using 

 

Channel Adapter

 

s (127). A

 

Channel Names

 

If channels are logical addresses, what do these addresses look like? As in 
so many cases, the detailed answer depends on the implementation of the 
messaging system. Nevertheless, in most cases channels are referenced by 
an alphanumeric name, such as 

 

MyChannel

 

. Many messaging systems sup-
port a hierarchical channel-naming scheme, which enables you to organize 
channels in a way that is similar to a file system with folders and subfold-
ers. For example, 

 

MyCorp/Prod/OrderProcessing/NewOrders

 

 would indicate a 
channel that is used in a production application at 

 

MyCorp

 

 and contains new 
orders.

 

Hohpe_ch03.fm  Page 63  Monday, September 29, 2003  10:37 AM



 

64

 

C

 

HAPTER

 

 3 M

 

ESSAGING

 

 S

 

YSTEMS

 

Message
Channel

 

well-designed set of channels forms a 

 

Message Bus 

 

(137) that acts like a mes-
saging API for a whole group of applications. 

 

Example:

 

Stock Trading

 

When a stock trading application makes a trade, it puts the request on a 

 

Mes-
sage Channel

 

 for trade requests. Another application that processes trade 
requests will look for those it can process on that same message channel. If the 
requesting application needs to request a stock quote, it will probably use a 
different 

 

Message Channel

 

, one designed for stock quotes, so that the quote 

 

requests stay separate from the trade requests.

 

Example:

 

J2EE JMS Reference Implementation

 

Let’s look at how to create a 

 

Message Channel

 

 in JMS. The J2EE SDK ships with 
a reference implementation of the J2EE services, including JMS. The reference 
server can be started with the 

 

j2ee

 

 command. Message channels have to be con-
figured using the 

 

j2eeadmin

 

 tool. This tool can configure both queues and topics.

 

j2eeadmin -addJmsDestination jms/mytopic topic
j2eeadmin -addJmsDestination jms/myqueue queue

 

Once the channels have been administered (created), they can be accessed by 
JMS client code.

 

Context jndiContext = new InitialContext();
Queue myQueue = (Queue) jndiContext.lookup("jms/myqueue");
Topic myTopic = (Topic) jndiContext.lookup("jms/mytopic");

 

The JNDI lookup doesn’t create the queue (or topic); it was already created 
by the 

 

j2eeadmin command. The JNDI lookup simply creates a Queue instance in 
Java that models and provides access to the queue structure in the messaging 
system.

Example: IBM WebSphere MQ

If your messaging system implementation is IBM’s WebSphere MQ for Java, 
which implements JMS, you’ll use the WebSphere MQ JMS administration tool 
to create destinations. This will create a queue named myQueue.

DEFINE Q(myQueue)

Hohpe_ch03.fm  Page 64  Monday, September 29, 2003  10:37 AM



MESSAGE CHANNEL 65

Message 
Channel

Once that queue exists in WebSphere MQ, an application can access the
queue.

WebSphere MQ, without the full WebSphere Application Server, does not
include a JNDI implementation, so we cannot use JNDI to look up the queue as
we did in the J2EE example. Rather, we must access the queue via a JMS ses-
sion, like this.

Session session = // create the session
Queue queue = session.createQueue("myQueue");

Example: Microsoft MSMQ

MSMQ provides a number of different ways to create a message channel, called 
a queue. You can create a queue using the Microsoft Message Queue Explorer 
or the Computer Management console (see figure). From here you can set 
queue properties or delete queues.

Alternatively, you can create the queue using code.

using System.Messaging;
...
MessageQueue.Create("MyQueue");

Once the queue is created, an application can access it by creating a Message-
Queue instance, passing the name of the queue.

MessageQueue mq = new MessageQueue("MyQueue");

Hohpe_ch03.fm  Page 65  Monday, September 29, 2003  10:37 AM



66 CHAPTER 3 MESSAGING SYSTEMS

Message

Message

An enterprise has two separate applications that are communicating via Mes-
saging (53), using a Message Channel (60) that connects them.

How can two applications connected by a Message Channel exchange a piece of
information?

A Message Channel (60) can often be thought of as a pipe, a conduit from
one application to another. It might stand to reason then that data could be
poured into one end, like water, and it would come flowing out of the other
end. But most application data isn’t one continuous stream; it consists of units,
such as records, objects, database rows, and the like. So a channel must trans-
mit units of data.

What does it mean to “transmit” data? In a function call, the caller can pass
a parameter by reference by passing a pointer to the data’s address in memory;
this works because both the caller and the function share the same memory
heap. Similarly, two threads in the same process can pass a record or object by
passing a pointer, since they both share the same memory space.

Two separate processes passing a piece of data have more work to do. Since
they each have their own memory space, they have to copy the data from one
memory space to the other. The data is usually transmitted as a byte stream, the
most basic form of data. This means that the first process must marshal the
data into byte form, and then copy it from the first process to the second one;
the second process will unmarshal the data back into its original form, such
that the second process then has a copy of the original data in the first process.
Marshaling is how a Remote Procedure Call (RPC) sends arguments to the
remote process and how the process returns the result.

So messaging transmits discrete units of data, and it does so by marshaling
the data from the sender and unmarshaling it in the receiver so that the receiver
has its own local copy. What would be helpful would be a simple way to wrap a
unit of data such that it is appropriate to transmit the data on a messaging
channel.

Hohpe_ch03.fm  Page 66  Monday, September 29, 2003  10:37 AM



MESSAGE 67

Message

Package the information into a Message, a data record that the messaging system 
can transmit through a Message Channel.

Thus, any data that is to be transmitted via a messaging system must be con-
verted into one or more messages that can be sent through messaging channels.

A message consists of two basic parts.

1. Header—Information used by the messaging system that describes the data
being transmitted, its origin, its destination, and so on.

2. Body—The data being transmitted, which is generally ignored by the mes-
saging system and simply transmitted as is.

This concept is not unique to messaging. Both postal service mail and e-mail
send data as discrete mail messages. An Ethernet network transmits data as
packets, as does the IP part of TCP/IP such as the Internet. Streaming media on
the Internet is actually a series of packets.

To the messaging system, all messages are the same: some body of data to be
transmitted as described by the header. However, to the applications programmer,
there are different types of messages—that is, different application styles of use.
Use a Command Message (145) to invoke a procedure in another application.
Use a Document Message (147) to pass a set of data to another application. Use
an Event Message (151) to notify another application of a change in this applica-
tion. If the other application should send back a reply, use Request-Reply (154).

If an application wishes to send more information than one message can
hold, break the data into smaller parts and send the parts as a Message
Sequence (170). If the data is only useful for a limited amount of time, specify
this use-by time as a Message Expiration (176). Since all the various senders
and receivers of messages must agree on the format of the data in the messages,
specify the format as a Canonical Data Model (355).

Sender ReceiverMessage

Hohpe_ch03.fm  Page 67  Monday, September 29, 2003  10:37 AM



68 CHAPTER 3 MESSAGING SYSTEMS

Message

Example: JMS Message

In JMS, a message is represented by the type Message, which has several subtypes. 
In each subtype, the header structure is the same; it’s the body format that var-
ies by type.

1. TextMessage—The most common type of message. The body is a string, such 
as literal text or an XML document. textMessage.getText() returns the mes-
sage body as a String.

2. BytesMessage—The simplest, most universal type of message. The body is a 
byte array. bytesMessage.readBytes(byteArray) copies the contents into the spec-
ified byte array.

3. ObjectMessage—The body is a single Java object, specifically one that imple-
ments java.io.Serializable, which enables the object to be marshaled and 
unmarshaled. objectMessage.getObject() returns the Serializable.

4. StreamMessage—The body is a stream of Java primitives. The receiver uses 
methods like readBoolean(), readChar(), and readDouble() to read the data from 
the message.

5. MapMessage—The body acts like a java.util.Map, where the keys are Strings. 
The receiver uses methods like getBoolean("isEnabled") and getInt("number-
OfItems") to read the data from the message.

Example: .NET Message

In .NET, the Message class implements the message type. It has a property, Body, 
which contains the contents of the message as an Object; BodyStream stores the con-
tents as a Stream. Another property, BodyType, specifies the type of data the body 
contains, such as a string, a date, a currency, a number, or any other object.

Example: SOAP Message

In the SOAP protocol [SOAP 1.1], a SOAP message is an example of Message. 
A SOAP message is an XML document that is an envelope (a root SOAP-ENV:Enve-
lope element) that contains an optional header (a SOAP-ENV:Header element) and 
required body (a SOAP-ENV:Body element). This XML document is an atomic data 
record that can be transmitted (typically the transmission protocol is HTTP) so 
it is a message.

Hohpe_ch03.fm  Page 68  Monday, September 29, 2003  10:37 AM



MESSAGE 69

Message

Here is an example of a SOAP message from the SOAP spec that shows an 
envelope containing a header and a body.

<SOAP-ENV:Envelope
  xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
  SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
   <SOAP-ENV:Header>
       <t:Transaction
           xmlns:t="some-URI"
           SOAP-ENV:mustUnderstand="1">
               5
       </t:Transaction>
   </SOAP-ENV:Header>
   <SOAP-ENV:Body>
       <m:GetLastTradePrice xmlns:m="Some-URI">
           <symbol>DEF</symbol>
       </m:GetLastTradePrice>
   </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

SOAP also demonstrates the recursive nature of messages, because a SOAP 
message can be transmitted via a messaging system, which means that a mes-
saging system message object (e.g., an object of type javax.jms.Message in JMS or 
System.Messaging.Message in .NET) contains the SOAP message (the XML SOAP-
ENV:Envelope document). In this scenario, the transport protocol isn’t HTTP but 
the messaging system’s internal protocol (which in turn may be using HTTP or 
some other network protocol to transmit the data, but the messaging system 
makes the transmission reliable). For more information on transporting a mes-
sage across a different messaging system, see Envelope Wrapper (330). 

Hohpe_ch03.fm  Page 69  Monday, September 29, 2003  10:37 AM



70 CHAPTER 3 MESSAGING SYSTEMS

Pipes and
Filters

Pipes and Filters

In many enterprise integration scenarios, a single event triggers a sequence of
processing steps, each performing a specific function. For example, let’s assume
a new order arrives in our enterprise in the form of a message. One requirement
may be that the message is encrypted to prevent eavesdroppers from spying on
a customer’s order. A second requirement is that the messages contain authenti-
cation information in the form of a digital certificate to ensure that orders are
placed only by trusted customers. In addition, duplicate messages could be sent
from external parties (remember all the warnings on the popular shopping sites
to click the Order Now button only once?). To avoid duplicate shipments and
unhappy customers, we need to eliminate duplicate messages before subsequent
order processing steps are initiated. To meet these requirements, we need to
transform a series of possibly duplicated, encrypted messages containing extra
authentication data into a series of unique, simple plain-text order messages
without the extraneous data fields.

How can we perform complex processing on a message while maintaining indepen-
dence and flexibility?

One possible solution would be to write a comprehensive “incoming mes-
sage massaging module” that performs all the necessary functions. However,
such an approach would be inflexible and difficult to test. What if we need to
add a step or remove one? For example, what if orders can be placed by large
customers who are on a private network and do not require encryption?

Implementing all functions inside a single component also reduces opportu-
nities for reuse. Creating smaller, well-defined components allows us to reuse
them in other processes. For example, order status messages may be encrypted
but do not need to be de-duped because duplicate status requests are generally
not harmful. Separating the decryption function into a separate module allows
us to reuse this function for other messages.

Integration solutions typically connect a collection of heterogeneous systems.
As a result, different processing steps may need to execute on different physical

Hohpe_ch03.fm  Page 70  Monday, September 29, 2003  10:37 AM



PIPES AND FILTERS 71

Pipes and 
Filters

machines, such as when individual processing steps can only execute on specific
systems. For example, it is possible that the private key required to decrypt
incoming messages is only available on a designated machine and cannot be
accessed from any other machine for security reasons. This means that the
decryption component has to execute on this designated machine, whereas the
other steps may execute on other machines. Likewise, different processing steps
may be implemented using different programming languages or technologies
that prevent them from running inside the same process or even on the same
computer.

Implementing each function in a separate component can still introduce
dependencies between components. For example, if the decryption component
calls the authentication component with the results of the decryption, we can-
not use the decryption function without the authentication function. We could
resolve these dependencies if we could “compose” existing components into a
sequence of processing steps in such a way that each component is independent
from the other components in the system. This would imply that components
expose generic external interfaces so that they are interchangeable.

If we use asynchronous messaging, we should take advantage of the asyn-
chronous aspects of sending messages from one component to another. For
example, a component can send a message to another component for further
processing without waiting for the results. Using this technique, we could pro-
cess multiple messages in parallel, one inside each component.

Use the Pipes and Filters architectural style to divide a larger processing task into a 
sequence of smaller, independent processing steps (filters) that are connected by 
channels (pipes).

Each filter exposes a very simple interface: It receives messages on the
inbound pipe, processes the message, and publishes the results to the outbound
pipe. The pipe connects one filter to the next, sending output messages from
one filter to the next. Because all components use the same external interface,
they can be composed into different solutions by connecting the components to
different pipes. We can add new filters, omit existing ones, or rearrange them

Incoming
Order

AuthenticateAuthenticateDecryptDecrypt De-DupDe-Dupe

Clean
Order

Filter Filter Filter

PipePipePipe Pipe

Hohpe_ch03.fm  Page 71  Monday, September 29, 2003  10:37 AM



72 CHAPTER 3 MESSAGING SYSTEMS

Pipes and
Filters

into a new sequence—all without having to change the filters themselves. The
connection between filter and pipe is sometimes called a port. In the basic form,
each filter component has one input port and one output port.

When applied to our example problem, the Pipes and Filters architecture
results in three filters connected by two pipes (see figure). We need one addi-
tional pipe to send messages to the decryption component and one to send the
clear-text order messages from the de-duper to the order management system.
This makes a total of four pipes.

Pipes and Filters describes a fundamental architectural style for messaging sys-
tems: Individual processing steps (filters) are chained together through the mes-
saging channels (pipes). Many patterns in this and the following sections, such as
routing and transformation patterns, are based on this Pipes and Filters architec-
tural style. This lets you easily combine individual patterns into larger solutions.

The Pipes and Filters style uses abstract pipes to decouple components from
each other. The pipe allows one component to send a message into the pipe so
that it can be consumed later by another process that is unknown to the compo-
nent. The obvious implementation for such a pipe is a Message Channel (60).
Typically, a Message Channel (60) provides language, platform, and location
independence between the filters. This affords us the flexibility to move a pro-
cessing step to a different machine for dependency, maintenance, or perfor-
mance reasons. However, a Message Channel (60) provided by a messaging
infrastructure can be quite heavyweight if all components can in fact reside on
the same machine. Using a simple in-memory queue to implement the pipes
would be much more efficient. Therefore, it is useful to design the components
so that they communicate with an abstract pipe interface. The implementation
of that interface can then be swapped out to use a Message Channel (60) or an
alternative implementation such as an in-memory queue. The Messaging Gate-
way (468) describes how to design components for this flexibility.

One of the potential downsides of a Pipes and Filters architecture is the
larger number of required channels. First, channels may not be an unlimited
resource, since channels provide buffering and other functions that consume
memory and CPU cycles. Also, publishing a message to a channel involves a
certain amount of overhead because the data has to be translated from the
application-internal format into the messaging infrastructure’s own format. At
the receiving end, this process has to be reversed. If we are using a long chain of
filters, we are paying for the gain in flexibility with potentially lower perfor-
mance due to repeated message data conversion.

The pure form of Pipes and Filters allows each filter to have only a single
input port and a single output port. When dealing with Messaging (53), we can
relax this property somewhat. A component may consume messages off more

Hohpe_ch03.fm  Page 72  Monday, September 29, 2003  10:37 AM



PIPES AND FILTERS 73

Pipes and 
Filters

than one channel and also output messages to more than one channel (for
example, a Message Router [78]). Likewise, multiple filter components can con-
sume messages off a single Message Channel (60). A Point-to-Point Channel
(103) ensures that only one filter component consumes each message.

Using Pipes and Filters also improves testability, an often overlooked benefit.
We can test each individual processing step by passing a Test Message (66) to the
component and comparing the result message to the expected outcome. It is more
efficient to test and debug each core function in isolation because we can tailor
the test mechanism to the specific function. For example, to test the encryption/
decryption function we can pass in a large number of messages containing ran-
dom data. After we encrypt and decrypt each message we compare it with the
original. On the other hand, to test authentication, we need to supply messages
with specific authentication codes that match known users in the system.

Pipeline Processing

Connecting components with asynchronous Message Channels (60) allows each
unit in the chain to operate in its own thread or its own process. When a unit
has completed processing one message, it can send the message to the output
channel and immediately start processing another message. It does not have to
wait for the subsequent components to read and process the message. This
allows multiple messages to be processed concurrently as they pass through the
individual stages. For example, after the first message has been decrypted, it can
be passed on to the authentication component. At the same time, the next mes-
sage can already be decrypted (see figure). We call such a configuration a pro-
cessing pipeline because messages flow through the filters like liquid flows
through a pipe. When compared to strictly sequential processing, a processing
pipeline can significantly increase system throughput.

DecryptDecrypt Authent.Authent. De-DupDe-DupeSequential

Pipeline

Msg 1 Msg 2 Msg 3

Msg 1

Msg 2

Msg 3

time

time
DecryptDecrypt Authent.Authent. De-DupDe-Dupe DecryptDecrypt Authent.Authent. De-DupDe-Dupe

DecryptDecrypt Authent.Authent. De-DupDe-Dupe

DecryptDecrypt Authent.Authent. De-DupDe-Dupe

DecryptDecrypt Authent.Authent. De-DupDe-Dupe

Pipeline Processing with Pipes and Filters

Hohpe_ch03.fm  Page 73  Monday, September 29, 2003  10:37 AM



74 CHAPTER 3 MESSAGING SYSTEMS

Pipes and
Filters

Parallel Processing

However, the overall system throughput is limited by the slowest process in the
chain. We can deploy multiple parallel instances of that process to improve
throughput. In this scenario, a Point-to-Point Channel (103) with Competing
Consumers (502) is needed to guarantee that each message on the channel is
consumed by exactly one of N available processors. This allows us to speed up
the most time-intensive process and improve overall throughput. We need to be
aware, though, that this configuration can cause messages to be processed out
of order. If the sequence of messages is critical, we can run only one instance of
each component or we must use a Resequencer (283).

For example, if we assume that decrypting a message is much slower than
authenticating it, we can use the configuration shown in the figure, running
three parallel instances of the decryption component. Parallelizing filters works
best if each filter is stateless—that is, it returns to the previous state after a mes-
sage has been processed. This means that we cannot easily run multiple parallel
de-dupe components because the component maintains a history of all mes-
sages that it already received and is therefore not stateless.

History of Pipes and Filters

Pipes and Filters architectures are by no means a new concept. The simple ele-
gance of this architecture combined with the flexibility and high throughput
makes it easy to understand the popularity of Pipes and Filters architectures.
The simple semantics also allow formal methods to be used to describe the
architecture.

[Kahn] described Kahn Process Networks in 1974 as a set of parallel pro-
cesses that are connected by unbounded FIFO (First-In, First-Out) channels.
[Garlan] contains a good chapter on different architectural styles, including
Pipes and Filters. [Monroe] gives a detailed treatment of the relationships
between architectural styles and design patterns. [PLoPD1] contains Regine

Incoming
Order

AuthenticateAuthenticate

DecryptDecrypt

De-DupDe-Dupe

Clean
Order

DecryptDecrypt

DecryptDecrypt

Increasing Throughput with Parallel Processing

Hohpe_ch03.fm  Page 74  Monday, September 29, 2003  10:37 AM



PIPES AND FILTERS 75

Pipes and 
Filters

Meunier’s “The Pipes and Filters Architecture,” which formed the basis for the
Pipes and Filters pattern included in [POSA]. Almost all integration-related
implementations of Pipes and Filters follow the “Scenario IV” presented in
[POSA], using active filters that pull, process, and push independently from and
to queuing pipes. The pattern described by [POSA] assumes that each element
undergoes the same processing steps as it is passed from filter to filter. This is
generally not the case in an integration scenario. In many instances, messages
are routed dynamically based on message content or external control. In fact,
routing is such a common occurrence in enterprise integration that it warrants
its own patterns, the Message Router (78).

Pipes and Filters share some similarities with the concept of Communicat-
ing Sequential Processes (CSPs). Introduced by Hoare in 1978 [CSP], CSPs
provide a simple model to describe synchronization problems that occur in
parallel processing systems. The basic mechanism underlying CSPs is the syn-
chronization of two processes via input-output (I/O). I/O occurs when process
A indicates that it is ready to output to process B, and process B states that it is
ready to input from process A. If one of these happens without the other being

Vocabulary

When discussing Pipes and Filters architectures, we need to be cautious 
with the term filter. We later define two additional patterns, the Message 
Filter (237) and the Content Filter (342). While both of these are special 
cases of a generic filter, so are many other patterns in this pattern lan-
guage. In other words, a pattern does not have to involve a filtering func-
tion (e.g., eliminating fields or messages) in order to be a filter in the sense 
of Pipes and Filters. We could have avoided this confusion by renaming 
the Pipes and Filters architectural style. However, we felt that Pipes and 
Filters is such an important and widely discussed concept that it would be 
even more confusing if we gave it a new name. We are trying to use the 
word filter cautiously throughout these patterns and trying to be clear 
about whether we are talking about a generic filter as in Pipes and Filters 
or a Message Filter (237)/Content Filter (342) that filters messages. If we 
thought there might still be confusion, we called the generic filter a com-
ponent, which is a generic enough (and often abused enough) term that it 
should not get us into any trouble.

Hohpe_ch03.fm  Page 75  Monday, September 29, 2003  10:37 AM



76 CHAPTER 3 MESSAGING SYSTEMS

Pipes and
Filters

true, the process is put on a wait queue until the other process is ready. CSPs
are different from integration solutions in that they are not as loosely coupled,
nor do the “pipes” provide any queuing mechanisms. Nevertheless, we can
benefit from the extensive treatment of CSPs in the academic world.

Example: Simple Filter in C# and MSMQ

The following code snippet shows a generic base class for a filter with one input 
port and one output port. The base implementation simply prints the body of 
the received message and sends it to the output port. A more interesting filter 
would subclass the Processor class and override the ProcessMessage method to per-
form additional actions on the message—that is, transform the message content 
or route it to different output channels.

You notice that the Processor receives references to an input and output chan-
nel during instantiation. Thus, the class is tied to neither specific channels nor 
any other filter. This allows us to instantiate multiple filters and to chain them 
together in arbitrary configurations.

using System;
using System.Messaging;

namespace PipesAndFilters
{
    public class Processor
    {
        protected MessageQueue inputQueue;
        protected MessageQueue outputQueue;

        public Processor (MessageQueue inputQueue, MessageQueue outputQueue)
        {
            this.inputQueue = inputQueue;
            this.outputQueue = outputQueue;
        }

        public void Process()
        {
            inputQueue.ReceiveCompleted += new ReceiveCompletedEventHandler(OnReceiveCompleted);
            inputQueue.BeginReceive();
        }

        private void OnReceiveCompleted(Object source, ReceiveCompletedEventArgs asyncResult)
        {
            MessageQueue mq = (MessageQueue)source;

            Message inputMessage = mq.EndReceive(asyncResult.AsyncResult);
            inputMessage.Formatter =  new XmlMessageFormatter
                                          (new String[] {"System.String,mscorlib"});
            

Hohpe_ch03.fm  Page 76  Monday, September 29, 2003  10:37 AM



PIPES AND FILTERS 77

Pipes and 
Filters

            Message outputMessage = ProcessMessage(inputMessage);

            outputQueue.Send(outputMessage);

            mq.BeginReceive();
        }    

        protected virtual Message ProcessMessage(Message m)
        {
            Console.WriteLine("Received Message: " + m.Body);
            return (m);
        }
    }
}

This implementation is an Event-Driven Consumer (498). The Process 
method registers for incoming messages and instructs the messaging system to 
invoke the method OnReceiveCompleted every time a message arrives. This method 
extracts the message data from the incoming event object and calls the virtual 
method ProcessMessage.

This simple filter example is not transactional. If an error occurs while pro-
cessing the message (before it is sent to the output channel), the message is lost. 
This is generally not desirable in a production environment. See Transactional 
Client (484) for a solution to this problem.

Hohpe_ch03.fm  Page 77  Monday, September 29, 2003  10:37 AM



78 CHAPTER 3 MESSAGING SYSTEMS

Message
Router

Message Router

Multiple processing steps in a Pipes and Filters (70) chain are connected by
Message Channels (60).

How can you decouple individual processing steps so that messages can be passed 
to different filters depending on a set of conditions?

The Pipes and Filters (70) architectural style connects filters directly to each
other with fixed pipes. This makes sense because many applications of the Pipes
and Filters (70) pattern (e.g., [POSA]) are based on a large set of data items,
each of which undergoes the same sequential processing steps. For example, a
compiler will always execute the lexical analysis first, the syntactic analysis sec-
ond, and the semantic analysis last. Message-based integration solutions, on the
other hand, deal with individual messages that are not necessarily associated
with a single, larger data set. As a result, individual messages are more likely to
require a different series of processing steps.

A Message Channel (60) decouples the sender and the receiver of a Message
(66). This also means that multiple applications can publish Messages (66) to a
Message Channel (60). As a result, a Message Channel (60) can contain mes-
sages from different sources that may have to be treated differently based on the
type of the message or other criteria. You could create a separate Message
Channel (60) for each message type (a concept explained in more detail later as
a Datatype Channel [111]) and connect each channel to the required processing
steps for that message type. However, this would require the message origina-
tors to be aware of the selection criteria for different processing steps in order
to publish the message to the correct channel. It could also lead to an explosion
of the number of Message Channels (60). Furthermore, the decision on which
steps the message undergoes may not just depend on the origin of the message.
For example, we could imagine a situation where the destination of a message

Hohpe_ch03.fm  Page 78  Monday, September 29, 2003  10:37 AM



MESSAGE ROUTER 79

Message 
Router

varies depending on the number of messages that have passed through the
channel so far. No single originator would know this number and would there-
fore be unable to send the message to the correct channel.

Message Channels (60) provide a very basic form of routing capabilities. An
application publishes a Message (66) to a Message Channel (60) and has no fur-
ther knowledge of that Message’s (66) destination. Therefore, the path of the
Message (66) can change depending on which component subscribes to the
Message Channel (60). However, this type of “routing” does not take into
account the properties of individual messages. Once a component subscribes to
a Message Channel (60), it will by default consume all messages from that
channel regardless of the individual message’s specific properties. This behavior
is similar to the use of the pipe symbol in UNIX to process text files. It allows
you to compose processes into a Pipes and Filters (70) chain, but for the life-
time of the chain, all lines of text undergo the same steps.

We could make the receiving component itself responsible for determining
whether it should process a message that arrives on a common Message Chan-
nel (60). This is problematic, though, because once the message is consumed
and the component determines that it does not want the message, it can’t just
put the message back on the channel for another component to check out. Some
messaging systems allow receivers to inspect message properties without remov-
ing the message from the channel so that it can decide whether to consume the
message. However, this is not a general solution and also ties the consuming
component to a specific type of message because the logic for message selection
is now built right into the component. This would reduce the potential for reuse
of that component and eliminate the composability that is the key strength of
the Pipes and Filters (70) model.

Many of these alternatives assume that we can modify the participating com-
ponents to meet our needs. In most integration solutions, however, the building
blocks (components) are large applications that in most cases cannot be modi-
fied at all—for example, because they are packaged applications or legacy appli-
cations. This makes it uneconomical or even impossible to adjust the message-
producing or -consuming applications to the needs of the messaging system or
other applications.

One advantage of Pipes and Filters (70) is the composability of the individ-
ual components. This property enables us to insert additional steps into the fil-
ter chain without having to change existing components. This opens up the
option of decoupling two filters by inserting between them another filter that
determines what step to execute next.

Hohpe_ch03.fm  Page 79  Monday, September 29, 2003  10:37 AM



80 CHAPTER 3 MESSAGING SYSTEMS

Message
Router

Insert a special filter, a Message Router, which consumes a Message from one 
Message Channel and republishes it to a different Message Channel, depending on 
a set of conditions.

The Message Router differs from the basic notion of Pipes and Filters (70) in
that it connects to multiple output channels (i.e., it has more than one output
port). However, thanks to the Pipes and Filters (70) architecture, the compo-
nents surrounding the Message Router are completely unaware of the existence
of a Message Router. They simply consume messages off one channel and pub-
lish them to another. A defining property of the Message Router is that it does
not modify the message contents; it concerns itself only with the destination of
the message.

The key benefit of using a Message Router is that the decision criteria for the
destination of a message are maintained in a single location. If new message
types are defined, new processing components are added, or routing rules
change, we need to change only the Message Router logic, while all other com-
ponents remain unaffected. Also, since all messages pass through a single Mes-
sage Router, incoming messages are guaranteed to be processed one by one in
the correct order.

While the intent of a Message Router is to decouple filters from each other,
using a Message Router can actually cause the opposite effect. The Message
Router component must have knowledge of all possible destination channels
in order to send the message to the correct channel. If the list of possible desti-
nations changes frequently, the Message Router can turn into a maintenance
bottleneck. In those cases, it would be better to let the individual recipients
decide which messages they are interested in. You can accomplish this by using
a Publish-Subscribe Channel (106) and an array of Message Filters (237). We
contrast these two alternatives by calling them predictive routing and reactive
filtering (for a more detailed comparison, see the Message Filter (237) in Chap-
ter 7, “Message Routing”).

Message
Router

outQueue 1

outQueue 2

inQueue

Hohpe_ch03.fm  Page 80  Monday, September 29, 2003  10:37 AM



MESSAGE ROUTER 81

Message 
Router

Because a Message Router requires the insertion of an additional processing
step, it can degrade performance. Many message-based systems have to decode
the message from one channel before it can be placed on another channel,
which causes computational overhead if the message itself does not really
change. This overhead can turn a Message Router into a performance bottle-
neck. By using multiple routers in parallel or adding additional hardware, this
effect can be minimized. As a result, the message throughput (number of mes-
sages processed per time unit) may not be impacted, but the latency (time for
one message to travel through the system) will almost certainly increase.

Like most good tools, Message Routers can also be abused. Deliberate use of
Message Routers can turn the advantage of loose coupling into a disadvantage.
Loosely coupled systems can make it difficult to understand the “big picture” of
the solution—the overall flow of messages through the system. This is a com-
mon problem with messaging solutions, and the use of routers can exacerbate
the problem. If everything is loosely coupled to everything else, it becomes
impossible to understand in which direction messages actually flow. This can
complicate testing, debugging, and maintenance. A number of tools can help
alleviate this problem. First, we can use the Message History (551) to inspect
messages at runtime and see which components they traversed. Alternatively,
we can compile a list of all channels to which each component in the system
subscribes or publishes. With this knowledge we can draw a graph of all possi-
ble message flows across components. Many EAI packages maintain channel
subscription information in a central repository, making this type of static anal-
ysis easier.

Message Router Variants

A Message Router can use any number of criteria to determine the output chan-
nel for an incoming message. The most trivial case is a fixed router. In this case,
only a single input channel and a single output channel are defined. The fixed
router consumes one message off the input channel and publishes it to the out-
put channel. Why would we ever use such a brainless router? A fixed router
may be useful to intentionally decouple subsystems so that we can insert a more
intelligent router later. Or, we may be relaying messages between multiple inte-
gration solutions. In most cases, a fixed router will be combined with a Message
Translator (85) or a Channel Adapter (127) to transform the message content
or send the message over a different channel type.

Many Message Routers decide the message destination only on properties of
the message itself—for example, the message type or the values of specific mes-
sage fields. We call such a router a Content-Based Router (230). This type of

Hohpe_ch03.fm  Page 81  Monday, September 29, 2003  10:37 AM



82 CHAPTER 3 MESSAGING SYSTEMS

Message
Router

router is so common that the Content-Based Router (230) pattern describes it
in more detail.

Other Message Routers decide the message’s destination based on environ-
ment conditions. We call these routers context-based routers. Such routers are
commonly used to perform load-balancing, test, or failover functionality. For
example, if a processing component fails, the context-based router can reroute
messages to another processing component and thus provide failover capability.
Other routers split the flow of messages evenly across multiple channels to
achieve parallel processing similar to a load balancer. Some Message Channels
(60) already provide basic load-balancing capabilities without the use of a Mes-
sage Router because multiple Competing Consumers (502) can each consume
messages off the same channel as fast as they can. However, a Message Router
can have additional built-in intelligence to route the messages as opposed to a
simple round-robin implemented by the channel.

Many Message Routers are stateless—in other words, they look at only one
message at a time to make the routing decision. Other routers take the content
of previous messages into account when making a routing decision. For exam-
ple, the Pipes and Filters (70) example used a router that eliminates duplicate
messages by keeping a list of all messages it already received. These routers are
stateful.

Most Message Routers contain hard-coded logic for the routing decision.
However, some variants connect to a Control Bus (540) so that the middleware
solution can change the decision criteria without having to make any code
changes or interrupting the flow of messages. For example, the Control Bus
(540) can propagate the value of a global variable to all Message Routers in the
system. This can be very useful for testing to allow the messaging system to
switch from test to production mode. The Dynamic Router (243) configures
itself dynamically based on control messages from each potential recipient.

Chapter 7, “Message Routing,” introduces more variants of the Message
Router.

Example: Commercial EAI Tools

The notion of a Message Router is central to the concept of a Message Broker 
(322), implemented in virtually all commercial EAI tools. These tools accept 
incoming messages, validate them, transform them, and route them to the cor-
rect destination. This architecture alleviates the participating applications from 
having to be aware of other applications altogether because the Message Broker 
(322) brokers between the applications. This is a key function in enterprise inte-
gration because most applications to be connected are packaged or legacy 

Hohpe_ch03.fm  Page 82  Monday, September 29, 2003  10:37 AM



MESSAGE ROUTER 83

Message 
Router

applications and the integration has to happen nonintrusively—that is, without 
changing the application code. Therefore, the middleware has to incorporate all 
routing logic so the applications do not have to. The Message Broker (322) is 
the integration equivalent of a Mediator presented in [GoF].

Example: Simple Router with C# and MSMQ

This code example demonstrates a very simple router that routes an incoming 
message to one of two possible output channels based on a simple condition.

class SimpleRouter
{
    protected MessageQueue inQueue;
    protected MessageQueue outQueue1;
    protected MessageQueue outQueue2;

    public SimpleRouter(MessageQueue inQueue, MessageQueue outQueue1, MessageQueue outQueue2)
    {
        this.inQueue = inQueue;
        this.outQueue1 = outQueue1;
        this.outQueue2 = outQueue2;

        inQueue.ReceiveCompleted += new ReceiveCompletedEventHandler(OnMessage);
        inQueue.BeginReceive();
    }

    private void OnMessage(Object source, ReceiveCompletedEventArgs asyncResult)
    {
        MessageQueue mq = (MessageQueue)source;
        Message message = mq.EndReceive(asyncResult.AsyncResult);

        if (IsConditionFulfilled())
            outQueue1.Send(message);
        else
            outQueue2.Send(message);

        mq.BeginReceive(); 
    }    

    protected bool toggle = false;

    protected bool IsConditionFulfilled ()
    {
        toggle = !toggle;
        return toggle;
    }

}

Hohpe_ch03.fm  Page 83  Monday, September 29, 2003  10:37 AM



84 CHAPTER 3 MESSAGING SYSTEMS

Message
Router

The code is relatively straightforward. Like the simple filter presented in 
Pipes and Filters (70), the SimpleRouter class implements an Event-Driven Con-
sumer (498) of messages using C# delegates. The constructor registers the 
method OnMessage as the handler for messages arriving on the inQueue. This causes 
the .NET Framework to invoke the method OnMessage for every message that 
arrives on the inQueue. OnMessage figures out where to route the message by calling 
the method IsConditionFulfilled. In this trivial example, IsConditionFulfilled sim-
ply toggles between the two channels, dividing the sequence of messages evenly 
between outQueue1 and outQueue2. In order to keep the code to a minimum, this 
simple router is not transactional—that is, if the router crashes after it con-
sumes a message from the input channel and before it publishes it to the output 
channel, the message would be lost. Transactional Client (484) explains how to 
make endpoints transactional.

Hohpe_ch03.fm  Page 84  Monday, September 29, 2003  10:37 AM



MESSAGE TRANSLATOR 85

Message 
Translator

Message Translator

The previous patterns show how to construct messages and how to route them
to the correct destination. In many cases, enterprise integration solutions route
messages between existing applications such as legacy systems, packaged appli-
cations, homegrown custom applications, or applications operated by external
partners. Each of these applications is usually built around a proprietary data
model. Each application may have a slightly different notion of the Customer
entity, the attributes that define a Customer, and other entities to which a Cus-
tomer is related. For example, the accounting system may be more interested in
the customer’s taxpayer ID numbers, whereas the customer-relationship man-
agement (CRM) system stores phone numbers and addresses. The application’s
underlying data model usually drives the design of the physical database schema,
an interface file format, or an application programming interface (API)—those
entities with which an integration solution must interface. As a result, each
application typically expects to receive messages that mimic the application’s
internal data format.

In addition to the proprietary data models and data formats incorporated in
the various applications, integration solutions often interact with external busi-
ness partners via standardized data formats that are independent from specific
applications. A number of consortia and standards bodies define these proto-
cols; for example, RosettaNet, ebXML, OAGIS, and many other industry-spe-
cific consortia. In many cases, the integration solution needs to be able to
communicate with external parties using the “official” data formats, even
though the internal systems are based on proprietary formats.

How can systems using different data formats communicate with each other using 
messaging?

We could avoid having to transform messages if we could modify all appli-
cations to use a common data format. This turns out to be difficult for a num-
ber of reasons (see Shared Database [47]). First, changing an application’s data
format is risky, difficult, and requires a lot of changes to inherent business

Hohpe_ch03.fm  Page 85  Monday, September 29, 2003  10:37 AM



86 CHAPTER 3 MESSAGING SYSTEMS

Message
Translator

functionality. For most legacy applications, data format changes are simply not
economically feasible. We may all remember the effort related to the Y2K ret-
rofits, where the scope of the change was limited to the size of a single field!

Also, while we may get multiple applications to use the same data field
names and maybe even the same data types, the physical representation may
still be quite different. One application may use XML documents, whereas the
other application uses COBOL copybooks.

Furthermore, if we adjust the data format of one application to match that
of another application, we are tying the two applications more tightly to each
other. One of the key architectural principles in enterprise integration is loose
coupling between applications (see Canonical Data Model [355]). Modifying
one application to match another application’s data format would violate this
principle because it makes two applications directly dependent on each other’s
internal representation. This eliminates the possibility of replacing or changing
one application without affecting the other application, a scenario that is fairly
common in enterprise integration.

We could incorporate the data format translation directly into the Message
Endpoint (95). This way, all applications would publish and consume messages
in a common format as opposed to in the application’s internal data format.
However, this approach requires access to the endpoint code, which is usually
not the case for packaged applications. In addition, hard-coding the format
translation to the endpoint would reduce the opportunities for code reuse.

Use a special filter, a Message Translator, between other filters or applications to 
translate one data format into another.

The Message Translator is the messaging equivalent of the Adapter pattern
described in [GoF]. An adapter converts the interface of a component into
another interface so it can be used in a different context.

Translator

Incoming Message Translated Message

Hohpe_ch03.fm  Page 86  Monday, September 29, 2003  10:37 AM



MESSAGE TRANSLATOR 87

Message 
Translator

Levels of Transformation

Message translation may need to occur at a number of different levels. For
example, data elements may share the same name and data types but may be
used in different representations (e.g., XML file vs. comma-separated values vs.
fixed-length fields). Or, all data elements may be represented in XML format but
use different tag names. To summarize the different kinds of translation, we can
divide it into multiple layers (loosely borrowing from the OSI Reference Model).

The Transport layer at the bottom of the “stack” provides data transfer
between the different systems. It is responsible for complete and reliable data
transfer across different network segments and deals with lost data packets and
other network errors. Some EAI vendors provide their own transport protocols
(e.g., TIBCO RendezVous), whereas other integration technologies leverage

Layer Deals With 
Transformation 
Needs (Example)

Tools/
Techniques 

Data 
Structures 
(Application 
Layer)

Entities, associations, 
cardinality

Condense many-to-
many relationship into 
aggregation.

Structural 
mapping 
patterns, 
custom code

Data Types Field names, data types, 
value domains, 
constraints, code values

Convert ZIP code from 
numeric to string. 
Concatenate First 
Name and Last Name 
fields to single Name 
field. Replace U.S. state 
name with two-
character code.

EAI visual 
transformation 
editors, XSL, 
database 
lookups, custom 
code

Data
Representation

Data formats (XML, 
name-value pairs, fixed-
length data fields, EAI 
vendor formats, etc.)

Character sets (ASCII, 
UniCode, EBCDIC) 

Encryption/compression

Parse data 
representation and 
render in a different 
format. 

Decrypt/encrypt as 
necessary.

XML parsers, 
EAI parser/
renderer tools, 
custom APIs

Transport Communications 
protocols: TCP/IP sockets, 
HTTP, SOAP, JMS, 
TIBCO RendezVous

Move data across 
protocols without 
affecting message 
content.

Channel 
Adapter (127), 
EAI adapters

Hohpe_ch03.fm  Page 87  Monday, September 29, 2003  10:37 AM



88 CHAPTER 3 MESSAGING SYSTEMS

Message
Translator

TCP/IP protocols (e.g., SOAP). Translation between different transport layers
can be provided by the Channel Adapter (127) pattern.

The Data Representation layer is also referred to as the syntax layer. This
layer defines the representation of data that is transported. This translation is
necessary because the transport layer typically transports only character or byte
streams. This means that complex data structures have to be converted into a
character string. Common formats for this conversion include XML, fixed-
length fields (e.g., EDI records), and proprietary formats. In many cases, data is
also compressed or encrypted and carries check digits or digital certificates. In
order to interface systems with different data representations, data may have to
be decrypted, uncompressed, and parsed, and then the new data format must be
rendered and possibly compressed and encrypted as well.

The Data Types layer defines the application data types on which the appli-
cation (domain) model is based. Here we deal with such decisions as whether
date fields are represented as strings or as native date structures, whether dates
carry a time-of-day component, which time zone they are based on, and so on.
We may also consider whether the field Postal Code denotes only a U.S. ZIP
code or can contain Canadian postal codes. In the case of a U.S. zip code, do we
include a ZIP+4? Is it mandatory? Is it stored in one field, or two? Many of
these questions are usually addressed in so-called Data Dictionaries. The issues
related to data types go beyond whether a field is of type string or integer. Con-
sider sales data that is organized by region. The application used by one depart-
ment may divide the country into four regions: West, Central, South, and East,
identified by the letters W, C, S, and E. Another department may differentiate
the Pacific region from the mountain region and distinguish the Northeast from
the Southeast. Each region is identified by a two-digit number. What number
does the letter E correspond to?

The Data Structures layer describes the data at the level of the application
domain model. It is therefore also referred to as the application layer. This layer
defines the logical entities that the application deals with, such as customer,
address, or account. It also defines the relationships between these entities: Can
one customer have multiple accounts? Can a customer have multiple addresses?
Can customers share an address? Can multiple customers share an account? Is
the address part of the account or the customer? This is the domain of entity-
relationship diagrams and class diagrams.

Levels of Decoupling

Many of the design trade-offs in integration are driven by the need to decouple
components or applications. Decoupling is an essential tool to enable the man-

Hohpe_ch03.fm  Page 88  Monday, September 29, 2003  10:37 AM



MESSAGE TRANSLATOR 89

Message 
Translator

agement of change. Integration typically connects existing applications and has to
accommodate changes to these applications. Message Channels (60) decouple
applications from having to know each other’s location. A Message Router (78)
can even decouple applications from having to agree on a common Message
Channel (60). However, this form of decoupling achieves only limited indepen-
dence between applications if they still depend on each other’s data formats. A
Message Translator (85) can remove this additional level of dependency.

Chaining Transformations

Many business scenarios require transformations at more than one layer. For
example, let’s assume an EDI 850 Purchase Order record represented as a fixed-
format file has to be translated to an XML document sent over HTTP to the
order management system, which uses a different definition of the Order object.
The required transformation spans all four levels: The transport changes from
file transfer to HTTP, the data format changes from a fixed-field format to
XML, and both data types and data formats have to be converted to comply
with the Order object defined by the order management system. The beauty of a
layered model is that you can treat one layer without worrying about the lower
layers and therefore can focus on one level of abstraction at a time (see the fol-
lowing figure).

Chaining multiple Message Translator units using Pipes and Filters (70)
results in the following architecture (see figure on the next page). Creating one
Message Translator for each layer allows us to reuse these components in other
scenarios. For example, the Channel Adapter (127) and the EDI-to-XML Mes-
sage Translator can be implemented in a generic fashion so that they can be
reused for any incoming EDI document.

Data StructuresData Structures

Data TypesData Types

Data RepresentationData Representation

TransportTransport

Data StructuresData Structures

Data TypesData Types

Data RepresentationData Representation

TransportTransport

Application A Application B

Mapping Across Multiple Layers

Hohpe_ch03.fm  Page 89  Monday, September 29, 2003  10:37 AM



90 CHAPTER 3 MESSAGING SYSTEMS

Message
Translator Chaining multiple Message Translators also allows you to change the trans-

formations used at an individual layer without affecting any of the other layers.
You could use the same structural transformation mechanisms, but instead of
converting the data representation into a fixed format, you could convert it into
a comma-separated file by swapping out the data representation transformation.

There are many specializations and variations of the Message Translator pat-
tern. An Envelope Wrapper (330) wraps the message data inside an envelope so
that it can be transported across a messaging system. A Content Enricher (336)
augments the information inside a message, whereas the Content Filter (342)
removes information. The Claim Check (346) removes information but stores
it for later retrieval. The Normalizer (352) can convert a number of different
message formats into a consistent format. Last, the Canonical Data Model
(355) shows how to leverage multiple Message Translators to achieve data for-
mat decoupling. Inside each of those patterns, complex structural transforma-
tions can occur (e.g., mapping a many-to-many relationship into a one-to-one
relationship).

Example: Structural Transformation with XSL

Transformation is such a common need that the W3C defined a standard lan-
guage for the transformation of XML documents: the Extensible Stylesheet 
Language (XSL). Part of XSL is the XSL Transformation (XSLT) language, a 
rules-based language that translates one XML document into a different for-
mat. Since this is a book on integration and not on XSLT, we just present a sim-
ple example (for all the gory details, see the spec [XSLT 1.0], or to learn by 
reviewing code examples, see [Tennison]). In order to keep things simple, we 
explain the required transformation by showing example XML documents as 
opposed to XML schemas.

For example, let’s assume we have an incoming XML document and need to 
pass it to the accounting system. If both systems use XML, the Data Represen-

Channel Adapter EDI-to-XML 850-to-PurchaseOrder

Purchase
Order

Purchase
Order

Order Management

EDI 850EDI 850

EDI Partner

Chaining Multiple Message Translators (85)

Hohpe_ch03.fm  Page 90  Monday, September 29, 2003  10:37 AM



MESSAGE TRANSLATOR 91

Message 
Translator

tation layer is identical, and we need to cover any differences in field names, 
data types, and structure. Let’s assume the incoming document looks like this.

<data>
    <customer>
        <firstname>Joe</firstname>
        <lastname>Doe</lastname>
        <address type="primary">
            <ref id="55355"/>
        </address>
        <address type="secondary">
            <ref id="77889"/>
        </address>
    </customer>
    <address id="55355">
        <street>123 Main</street>
        <city>San Francisco</city>
        <state>CA</state>
        <postalcode>94123</postalcode>
        <country>USA</country>
        <phone type="cell">
            <area>415</area>
            <prefix>555</prefix>
            <number>1234</number>
        </phone>
        <phone type="home">
            <area>415</area>
            <prefix>555</prefix>
            <number>5678</number>
        </phone>
    </address>
    <address id="77889">
        <company>ThoughtWorks</company>
        <street>410 Townsend</street>
        <city>San Francisco</city>
        <state>CA</state>
        <postalcode>94107</postalcode>
        <country>USA</country>
    </address>
</data>

This XML document contains customer data. Each customer can be associ-
ated with multiple addresses, each of which can contain multiple phone num-
bers. The XML represents addresses as independent entities so that multiple 
customers could share an address.

Let’s assume the accounting system needs the following representation. (If 
you think that the German tag names are bit farfetched, keep in mind that one 
of the most popular pieces of enterprise software (SAP) is famous for its Ger-
man field names!)

Hohpe_ch03.fm  Page 91  Monday, September 29, 2003  10:37 AM



92 CHAPTER 3 MESSAGING SYSTEMS

Message
Translator

<Kunde>
    <Name>Joe Doe</Name>
    <Adresse>
        <Strasse>123 Main</Strasse>
        <Ort>San Francisco</Ort>
        <Telefon>415-555-1234</Telefon>
    </Adresse>
</Kunde>

The resulting document has a much simpler structure. Tag names are differ-
ent, and some fields are merged into a single field. Since there is room for only 
one address and phone number, we need to pick one from the original docu-
ment based on business rules. The following XSLT program transforms the 
original document into the desired format. It does so by matching elements of 
the incoming document and translating them into the desired document format.

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
    <xsl:output method="xml" indent="yes"/>
    <xsl:key name="addrlookup" match="/data/address" use="@id"/>
    <xsl:template match="data">
        <xsl:apply-templates select="customer"/>
    </xsl:template>
    <xsl:template match="customer">
        <Kunde>
            <Name>
                <xsl:value-of select="concat(firstname, ' ', lastname)"/>
            </Name>
            <Adresse>
                <xsl:variable name="id" select="./address[@type='primary']/ref/@id"/>
                <xsl:call-template name="getaddr">
                    <xsl:with-param name="addr" select="key('addrlookup', $id)"/>
                </xsl:call-template>
            </Adresse>
        </Kunde>
    </xsl:template>
    <xsl:template name="getaddr">
        <xsl:param name="addr"/>
        <Strasse>
            <xsl:value-of select="$addr/street"/>
        </Strasse>
        <Ort>
            <xsl:value-of select="$addr/city"/>
        </Ort>
        <Telefon>
            <xsl:choose>
                <xsl:when test="$addr/phone[@type='cell']">
                    <xsl:apply-templates select="$addr/phone[@type='cell']" mode="getphone"/>
                </xsl:when>

Hohpe_ch03.fm  Page 92  Monday, September 29, 2003  10:37 AM



MESSAGE TRANSLATOR 93

Message 
Translator

                <xsl:otherwise>
                    <xsl:apply-templates select="$addr/phone[@type='home']" mode="getphone"/>
                </xsl:otherwise>
            </xsl:choose>
        </Telefon>
    </xsl:template>
    <xsl:template match="phone" mode="getphone">
        <xsl:value-of select="concat(area, '-', prefix, '-', number)"/>
    </xsl:template>
    <xsl:template match="*"/>
</xsl:stylesheet>

XSL is based on pattern matching and can be a bit hairy to read if you are 
used to procedural programming like most of us. In a nutshell, the instructions 
inside an <xsl:template> element are called whenever an element in the incoming 
XML document matches the expression specified in the match attribute. For 
example, the line

<xsl:template match="customer">

causes the subsequent lines to be executed for each <customer> element in the 
source document. The next statements concatenate first and last name and out-
put it inside the <Name> element. Getting the address is a little trickier. The XSL 
code looks up the correct instance of the <address> element and calls the subrou-
tine getaddr. getaddr extracts the address and phone number from the original 
<address> element. It uses the cell phone number if one is present, or the home 
phone number otherwise.

Example: Visual Transformation Tools

If you find XSL programming a bit cryptic, you are in good company. There-
fore, most integration vendors provide a visual transformation editor that dis-
plays the structure of the two document formats on the left-hand side and the 
right-hand side of the screen respectively. The users can then associate elements 
between the formats by drawing connecting lines between them. This can be a 
lot simpler than coding XSL. Some vendors, such as Contivo, specialize entirely 
in transformation tools.

The following figure shows the Microsoft BizTalk Mapper editor that is inte-
grated into Visual Studio. The diagram shows the mapping between individual 
elements more clearly than the XSL script. On the other hand, some of the 
details (e.g., how the address is chosen) are hidden underneath the so-called 
functoid icons.

Hohpe_ch03.fm  Page 93  Monday, September 29, 2003  10:37 AM



94 CHAPTER 3 MESSAGING SYSTEMS

Message
Translator

Being able to drag and drop transformations shortens the learning curve for 
developing a Message Translator dramatically. As so often though, visual tools 
can also become a liability when it comes to debugging or when you need to 
create complex solutions. Therefore, many tools let you switch back and forth 
between XSL and the visual representation.

Creating Transformations: The Drag-Drop Style

Hohpe_ch03.fm  Page 94  Monday, September 29, 2003  10:37 AM



MESSAGE ENDPOINT 95

Message 
Endpoint

Message Endpoint

Applications are communicating by sending Messages (66) to each other via
Message Channels (60).

How does an application connect to a messaging channel to send and receive 
Messages?

The application and the messaging system are two separate sets of software.
The application provides functionally for some type of user, whereas the mes-
saging system manages messaging channels for transmitting messages for com-
munication. Even if the messaging system is incorporated as a fundamental part
of the application, it is still a separate, specialized provider of functionality,
much like a database management system or a Web server. Because the applica-
tion and the messaging system are separate, they must have a way to connect
and work together.

A messaging system is a type of server, capable of taking requests and
responding to them. Like a database accepting and retrieving data, a messaging
server accepts and delivers messages. A messaging system is a messaging server.

A server needs clients, and an application that uses messaging is a client of
the messaging server. But applications do not necessarily know how to be mes-
saging clients any more than they know how to be database clients. The mes-
saging server, like a database server, has a client API that the application can
use to interact with the server. The API is not application-specific but is

Sender
Application

Receiver
Application

ChannelMessage

Data Data
??? ???

Applications Disconnected from a Message Channel

Hohpe_ch03.fm  Page 95  Monday, September 29, 2003  10:37 AM



96 CHAPTER 3 MESSAGING SYSTEMS

Message
Endpoint

domain-specific, where the domain is messaging. The application must contain
a set of code that connects and unites the messaging domain with the applica-
tion to allow the application to perform messaging.

Connect an application to a messaging channel using a Message Endpoint, a client 
of the messaging system that the application can then use to send or receive 
Messages.

Message Endpoint code is custom to both the application and the messaging
system’s client API. The rest of the application knows little about message for-
mats, messaging channels, or any of the other details of communicating with
other applications via messaging. It just knows that it has a request or piece of
data to send to another application, or is expecting those from another applica-
tion. It is the messaging endpoint code that takes that command or data, makes
it into a message, and sends it on a particular messaging channel. It is the end-
point that receives a message, extracts the contents, and gives them to the appli-
cation in a meaningful way.

The Message Endpoint encapsulates the messaging system from the rest of
the application and customizes a general messaging API for a specific applica-
tion and task. If an application using a particular messaging API were to switch
to another, developers would have to rewrite the message endpoint code, but
the rest of the application should remain the same. If a new version of a messag-
ing system changes the messaging API, this should only affect the message end-
point code. If the application decides to communicate with others via some
means other than messaging, developers should ideally be able to rewrite the
message endpoint code but leave the rest of the application unchanged.

A Message Endpoint can be used to send messages or receive them, but one
instance does not do both. An endpoint is channel-specific, so a single applica-
tion would use multiple endpoints to interface with multiple channels. An

Sender 
Application

Receiver 
Application

ChannelMessage

Data Data
Message 
Endpoint

Message 
Endpoint

Hohpe_ch03.fm  Page 96  Monday, September 29, 2003  10:37 AM



MESSAGE ENDPOINT 97

Message 
Endpoint

application may use multiple endpoint instances to interface to a single channel,
usually to support multiple concurrent threads.

A Message Endpoint is a specialized Channel Adapter (127) one that has
been custom developed for and integrated into its application.

A Message Endpoint should be designed as a Messaging Gateway (468) to
encapsulate the messaging code and hide the message system from the rest of
the application. It can employ a Messaging Mapper (477) to transfer data
between domain objects and messages. It can be structured as a Service Activa-
tor (532) to provide asynchronous message access to a synchronous service or
function call. An endpoint can explicitly control transactions with the messag-
ing system as a Transactional Client (484).

Sending messages is pretty easy, so many endpoint patterns concern different
approaches for receiving messages. A message receiver can be a Polling Con-
sumer (494) or an Event-Driven Consumer (498). Multiple consumers can
receive messages from the same channel either as Competing Consumers (502)
or via a Message Dispatcher (508). A receiver can decide which messages to
consume or ignore using a Selective Consumer (515). It can use a Durable Sub-
scriber (522) to make sure a subscriber does not miss messages published while
the endpoint is disconnected. And the consumer can be an Idempotent Receiver
(528) that correctly detects and handles duplicate messages.

Example: JMS Producer and Consumer

In JMS, the two main endpoint types are MessageProducer, for sending messages, 
and MessageConsumer, for receiving messages. A Message Endpoint uses an instance 
of one of these types to either send messages to or receive messages from a par-
ticular channel.

Example: .NET MessageQueue

In .NET, the main endpoint class is the same as the main Message Channel (60) 
class, MessageQueue. A Message Endpoint uses an instance of MessageQueue to send 
messages to or receive messages from a particular channel.

Hohpe_ch03.fm  Page 97  Monday, September 29, 2003  10:37 AM



Hohpe_ch03.fm  Page 98  Monday, September 29, 2003  10:37 AM


