
SOA Patterns – New Insights or Recycled Knowledge?

Gregor Hohpe, Google

gregor@hohpe.com

Abstract

Design Patterns have enjoyed enormous popularity in the software community and have

become somewhat of a fad. This can make it challenging to distinguish patterns that

convey new knowledge from recipes or tutorials that have been cast into patterns form.

This article examines the role patterns play in the adoption of new technologies and

architectural styles. In particular it describes why the shift to service-oriented

architectures requires us to discover, document, and share new patterns.

Biography

Gregor Hohpe is a software architect with Google, Inc. Gregor is a widely recognized

thought leader on asynchronous messaging architectures and service-oriented

architectures. He co-authored the seminal book "Enterprise Integration Patterns" and

speaks regularly at technical conferences around the world. Find out more about his work

at www.eaipatterns.com.

Software's Fascination with Patterns .. 1

Dissecting Knowledge .. 2

The Language of Patterns ... 3

SOA with an Uppercase A.. 3

SOA Patterns... 4

Programming Models.. 5

Current Work .. 7

Usage before Patterns ... 8

Patterns and Standards .. 9

Conclusion .. 9

Bibliography ... 10

SOA Patterns – New Insights or Recycled Knowledge?

Gregor Hohpe www.eaipatterns.com 1

Software's Fascination with Patterns

Design Patterns have enjoyed enormous popularity in the software community. A recent

search for the keyword "patterns" on an on-line computer bookstore yielded 135 current

titles. This phenomenon naturally begs two questions: "why are patterns so popular in the

software community?" and "do patterns really provide value in all of these scenarios?"

Patterns encapsulate knowledge. Ward Cunningham has often described them as "mind-

sized chunks of information". This makes the wide adoption of patterns in the

knowledge-intensive IT industry unsurprising, especially given the short half life of

knowledge. However, many other science and engineering disciplines are too based on

constant knowledge creation and dissemination yet rarely use patterns for knowledge

capture. So what makes patterns so appealing in the software industry? Unlike most other

engineering disciplines the software industry is still characterized by the lack of a precise

vocabulary. While computer science has established solid theoretical foundations,

designing complex software systems tends to be a much less structured activity than

designing buildings or machines. In the absence of an industry-accepted vocabulary

patterns fill in a critical gap by establishing a common language. Since patterns are not

meant to be precise definitions and do not have to map into an overarching metamodel,

they can also be "soft" around the edges, conveying knowledge without pretending to be

engineering specifications. The ability to document knowledge without having to create a

definitive step-by-step reference is particularly valuable in a field that uses a "soft"

medium. Software developers usually start with a blank slate and are constrained by very

few factors beyond the language syntax. There are no electric codes that have to be met

or standard measurements to be used. In such an environment patterns guide the designer

as opposed to prescribing a specific solution.

The early successes of software patterns induced a network effect and a bit of a fad.

Software professionals started to document

patterns in many related areas, ranging from

managing projects, holding stand-up meetings,

or writing more patterns. Soon, the publishing

industry began to use the word "pattern" to

label books that offer design guidance as

opposed to describing the latest programming

interface, indicating that patterns are not

immune to the often cited "hype cycle" of new

technologies [1]. Once patterns reached the

Peak of Inflated Expectations they were

frequently hailed as the silver bullet that will

make software cheaper, better, and less buggy. Since then patterns have slid somewhat

into the Trough of Disillusionment – we once again realize that silver bullets may work

in the world of mythology but not in software engineering. But entering the Trough is by

no means a sign of failure but rather indicates widespread acceptance; it simply indicates

Peak of Inflated Expectations

Trough of Disillusionment

Slope of Enlightenment

Source: Gartner

SOA Patterns – New Insights or Recycled Knowledge?

Gregor Hohpe www.eaipatterns.com 2

that the community uses patterns more extensively and realizes that they cannot fulfill all

(inflated) expectations.

Dissecting Knowledge

The popularity of patterns leaves many developers to decide which patterns document

new useful knowledge versus which ones just use the pattern format to increase

readership. The situation is complicated by the fact that patterns present solutions that

may be applicable in a wide range of domains. For example, one can find patterns such as

Correlation Identifier [2] in Web services specifications or business protocols as well as

in low-level communication layers such as TCP. Did the pattern author really discover

new insights or simply recycle existing knowledge?

Let's address this question by coming back to the original purpose of patterns: to chunk

up and convey knowledge. Having chunked up knowledge is particularly useful if you are

working with new and less familiar technologies. But as patterns are applicable across

technologies (for example, most patterns in [3] can be implemented in both Java and C#)

a new technology alone does not imply a new set of patterns. To better understand this

phenomenon it helps to categorize our knowledge of programming and systems building

into distinct levels:

Syntax specifies the mechanics of making the machine understand the solution the

developer in his or her head. One could posit that syntax is an artifact of our crude input

methods; if we didn't have to type the solution into lines of characters we might have to

worry less about where the curly brace goes or why variable names cannot start with a

digit. Some programming models such as visual process modelers shield the developer

from having to understand the syntax or defer the syntax question to XML files. We

quickly realize though, that understanding a system's syntax is a necessary but by far not

a sufficient condition to creating viable solutions.

Constructs are the elements of the programming model. In object-oriented languages we

use constructs such as classes and the relationships between them, for example

inheritance or association. Constructs gives us the framework for expressing our solutions,

such as dividing responsibilities across a set of classes. Understanding the constructs of a

programming model or an architectural style typically requires a certain amount of

abstract thinking but the definitions often fit on just a few pages of text. The main reason

lies in the fact that the constructs, just like the syntax, only describe legal system

configurations but give no guidance on how to come up with a suitable solution or how to

distinguish a good solution from a bad one.

Principles help us come up with good solutions that take advantage of the underlying

constructs. For examples, the principle of Separation of Concerns teaches us to separate

our logic across classes (or services) instead of sticking it all into a single element. The

Open-Closed principle [4][5] reminds us that a class should be open for extension but

closed for modification. These principles are designed to hold almost universally true,

SOA Patterns – New Insights or Recycled Knowledge?

Gregor Hohpe www.eaipatterns.com 3

which turns out to be their biggest strength and weakness at once. Applying all principles

at once can result in overly complex and sometimes even contradictory solutions. The

key is to find the right balance between these principles to arrive at a sensible solution.

Patterns apply the principles to a specific context and present a concrete solution that

balances often contradictory forces. For example, Two-step View [3] applies Separation

of Concerns to rendering user interface screens: it instructs us to separate the generation

of logical data from the actual rendering of the screen. Still, the pattern tells us a lot more

than the principle: it draws a specific context, explains the forces at work, spells out the

specific concerns we want to separate, provides a concrete solution, and points us to

related patterns that might be of interest. Thus, patterns guide developers to a solution

that balances design principles to address a concrete problem.

The Language of Patterns

Abstract
Component

Concrete
Component

Decorator

Figure 1: Decorator Pattern for Object-oriented Systems

Patterns are characterized by a strong solution focus [6]. To describe the solution,

patterns use the language of the underlying constructs. For example, the Decorator

pattern [7] describes how to attach additional responsibilities to an object by creating

another class that implements the same interface and delegates calls to the original

instance by keeping a reference (see Figure 1). Clearly, the solution relates to objects,

classes, interface implementation, delegation – the constructs of object-oriented

programming.

The ability to express patterns using programming constructs, as opposed to code,

explains why many patterns apply across programming languages. For example, C# and

Java share the same object-oriented programming model and thus the same vocabulary to

express patterns. This means that in order to discover entirely new sets of patterns we

need to look not only for new technologies but also for a shift in programming model or

architectural model.

SOA with an Uppercase A

The biggest shift in mainstream programming or architectural model today is toward

Service-oriented Architectures (SOA). After much confusion about the relationship

between Web services and SOA, promoters of service orientation place the emphasis of

the acronym on the letter "A" to highlight the fact that SOA is an architectural style as

SOA Patterns – New Insights or Recycled Knowledge?

Gregor Hohpe www.eaipatterns.com 4

opposed to collection of specific technologies. According to Garlan and Shaw [8] an

architectural style determines the vocabulary of components and connectors that can be

used together with a set of constraints on how they can be combined. Common examples

of architectural styles include Pipes-and-Filters, Object-oriented Organization, or

Layered Systems.

Each architectural style defines a set of constructs and therefore provides a different

foundation for solution patterns. New architectural styles also change the way developers

think about solutions, highlighting the need for new guidance in form of patterns. For

example, [2] presents a language of 65 patterns based on the Pipes-and-Filters

architectural style.

If SOA is truly a new architectural style we should expect it to form the basis for many

new patterns. However, opinions often diverge on this matter: some herald SOA as the

biggest shift in thinking about systems in the past decade while others challenge it as

simply recycling connected systems knowledge from about 20 years ago. As in most

cases, there is a bit of truth on both sides of the argument. Despite the rapid rate of

innovation, or maybe because of it, the software world is prone to rediscover many

techniques over and over, and SOA may be no exception. However, there is a big step

from some people possessing knowledge of connected systems architecture to millions of

developers constructing systems in a consistent and well understood way. In my opinion

it is this shift into the mainstream that makes SOA significant. And it is also the reason

we can expect design patterns to play a significant role in SOA adoption: they package up

knowledge for consumption by a wide range of consumers, i.e. developers. Reading a

WS-* specification is a lot less relevant to most developers than understanding the

common usage patterns and how they can be mapped onto the available technologies.

SOA Patterns

Giving SOA the benefit of the doubt as a new architectural style, what categories of new

patterns should we expect to see? First, we need to understand that SOA impacts system

design and development at many different levels. The "napkin sketch" in Figure 2 [9]

depicts a typical interaction between services in a service-oriented architecture.

In this scenario the service on the left accesses the service registry to discovers another

service and interacts with it by sending a message, for example placing an order. This

message is often part of a longer conversation between the services, for example an order,

followed by an acknowledgement, an invoice, payment notice, etc. Some of these

messages might be encrypted, or require authentication. In this example the service

provider is a composite service, i.e., a service that uses other services to fulfill its

responsibilities. For example, an order service might need to access inventory or pricing

services in order to accept an order or issue a quote. The implementation of such a

composite service is frequently performed by an orchestration engine [10], an element

optimized to execute a multi-step process, which includes interactions with other services.

A rules engine may guide the orchestration engine in the execution of the process by

SOA Patterns – New Insights or Recycled Knowledge?

Gregor Hohpe www.eaipatterns.com 5

incorporating business rules, such as orders over a certain amounts being handled with

priority. Figure 2 assumes that the composite service interacts with stands-alone services,

i.e. services that do not require other services. These services are implemented by custom

or packaged applications exposed as service endpoints. These endpoints manage the

translation between the asynchronous world of messaging and the synchronous, oriented-

oriented application program. Because different applications and services tend to use

incompatible data formats a translation of the message is often required along the way.

Application

Service
Endpoint

Orches tration Application
Transform

Rules

Conversation

Message
Document

Service
Registry

Discovery

Register

Figure 2: "Napkin Sketch" of an SOA Implementation

This (over-)simplified overview of an SOA implementation nevertheless exposes new

and unfamiliar programming models. These models require a different way of

programming, a different way of thinking, and also new guidance and patterns.

Programming Models

The above example highlights the following new programming models, which are

different from traditional object-oriented application development:

• Composition

• Process models

• Declarative programming

• Event-driven programming

SOA Patterns – New Insights or Recycled Knowledge?

Gregor Hohpe www.eaipatterns.com 6

Composition

Service-oriented solutions are composed from individual services. This aspect of SOA is

often not considered programming because it is concealed behind configuration files or

visual editors. However, this activity has an underlying programming model, the Pipes-

and-Filters style, and requires encoding, testing, debugging just as any other

programming language [11]. Because the composition is often done at (or after)

deployment time a disciplined development, test and release cycle is essential for this

programming activity.

Process Modeling

As the previous example showed, composite services use orchestration to coordinate the

interaction across multiple services. In fact, the separation of process from the functional

assets (i.e. services) is one of the major benefits of SOA. The vocabulary of process

models is quite different from object-oriented programming as it includes tasks, branches,

and synchronization points. The long running nature of these processes also requires a

very different approach to exception handling than typical application programming.

Declarative Programming

The transformation and rules engines in the above example share a similar programming

model, albeit mapped into very different syntax. Both components are programmed in a

declarative style as opposed to the sequential-procedural style most developers are

comfortable with. For example, most transformation tools are based on XSLT, which

matches incoming documents against templates and outputs a transformed document.

Similarly, rules engines match incoming data against a set of rules. Often, this type of

programming is hidden behind visual editors, but the challenges of the declarative model

usually remain. Because the execution order of these declarative "programs" is not

specified inside the code but is determined at run-time, testing and debugging tend to be

more difficult. In general, declarative solutions are elegant to read, difficult to program

and incredibly hard to debug.

Event-based Programming

Services communicate through messages, which are often the result of business events,

such as a new order or a low inventory alert. Programs handling these messages cannot

assume a predefined execution order but have to react to incoming events as they occur.

Once again, this style of development is very different from traditional application

development, which allows the developer to control what happens when and in what

order [12]. Event-driven programs essentially abolish the notion of a call stack, which

prescribes the execution flow through synchronous method calls and local variables.

Instead, the programmer has to manage continuations and state explicitly as events arrive

not necessarily in the anticipated order. Many orchestration engines aid in the

development of event-based processes, but the developers are still required to grasp

concepts like correlation, convoys etc.

SOA Patterns – New Insights or Recycled Knowledge?

Gregor Hohpe www.eaipatterns.com 7

Each of these programming models brings its own constructs, principles, and patterns.

While none of these programming models are entirely new (a theme common with SOA),

the widespread adoption will make it easier to harvest patterns from actual use. It'll also

increase developers' collective appetite for design guidance in form of patterns. Hence we

should expect to see new publications in these areas.

New Patterns

Because SOA is more than a new programming paradigm we should expect to see new

patterns and pattern languages beyond the programming models above.

We can, for example, expect patterns that describe the operational infrastructure of

SOA, such as service registries, orchestration engines, routing services and the like.

While many SOA frameworks and products will have most of the patterns incorporated

into the platform it is still valuable for developers to understand the "why" in addition so

simply following the "how" prescribed by the vendors.

Service-oriented architectures are large, dynamic, distributed systems that need to be

managed actively. Patterns can help system architects and operational engineers manage

complex system configuration and also document insights on the tuning an SOA for

different parameters, such as throughput, latency, resiliency etc.

Because service-oriented architectures form highly interconnected systems security plays

a significant role. We should therefore expect to see a renewed focus on security

patterns. While security is not a new concern, SOA provides a new context in which

many of the general techniques apply.

Last but not least the shift towards SOA is not merely about technology. Converting a

whole enterprise to a new architectural model requires change management and a clear

strategy on how to change the proverbial wheels on a moving car. SOA organizational

patterns should be document the evolving body of knowledge in this area.

Current Patterns Work

Trying to catalog ongoing work in patterns related to SOA would be an enormous task

and would likely not be much more useful than a few Web searches. Therefore, I want to

highlight just a few efforts that are currently under way or have been published recently.

Architectural Patterns guide architects in the overall composition of a service-based

solution:

• SOA Patterns [10] and [13] guide architects in the overall composition of a service-

based solution.

• Service discovery patterns [14] describe the motivation behind service registries and

the trade-offs between different mechanisms for service discovery.

• Security patterns [15]are not limited to SOA but are particularly relevant in that

context.

SOA Patterns – New Insights or Recycled Knowledge?

Gregor Hohpe www.eaipatterns.com 8

• Asynchronous Messaging Patterns [2] describe how to design asynchronous

messaging solutions.

• Conversation Patterns [16] describe ways multiple system communicate using

messages.

• Service Interaction Patterns [17] describe the basic forms of inter-service

communication. Conversation patterns are composed of service interaction patterns.

• Workflow Patterns [18] describe the common elements of constructing processes and

orchestrations.

• Orchestration Patterns [10] describe the key components that power orchestration

engines.

• A Pattern Language for Distributed Computing [19] ties together many of the patterns

that underlie distributed systems.

Usage before Patterns

With such a flurry of activity one has to wonder about the timeline and quality of the

patterns documentation. Patterns authors are sometimes criticized for delivering useful

information a few years too late. However, patterns are not created by a few authors but

instead harvested or mined from actual usage in the community. Therefore, patterns

cannot be documented before actual usage has built up enough experience and knowledge

to be worth documenting. Furthermore, good pattern descriptions are typically the result

of community collaboration. Many pattern authors share their work in progress with the

community to solicit feedback and refine their work. This implies that pattern

documentation can lag a shift in thinking by a few years.

Knowing that patience is not a particular virtue of the software industry we can expect to

see a few false starts in SOA patterns as well. Adoption of a new architectural style can

take considerable time. Arguably, object technologies required a decade or more to go

main stream. This poses a challenge for tools and platform vendors who are expected to

have quarterly releases introducing new features. They are therefore tempted to provide

guidance that is more strongly influenced by their specific tools as opposed to common

usage in the developer community. The popularity of the pattern format might entice

some of them to cast rather specific usages into the form of a common pattern, potentially

misleading developers.

How can developers tell the "good" patterns from the "bad" patterns? A good pattern

encapsulates actual knowledge and design guidance as opposed to just being an example.

A good pattern describes more than a solution, but discusses forces and explains the

"why" in the addition to the "how." Patterns do use specific technologies as an example

implementation but the solution itself should focus on the architectural concepts, not the

implementation technology. Lastly, most good patterns do not apply universally but

describe when they are (and when they are not) applicable.

SOA Patterns – New Insights or Recycled Knowledge?

Gregor Hohpe www.eaipatterns.com 9

Patterns and Standards

So far I have focused on SOA ads an architectural style and have largely ignored the Web

services standards. However, because the wide adoption of standards and specifications

drive the adoption proliferation of service-oriented architectures one should not dismiss

Web services as just another technology. Likewise, the definition of these standards has

an enormous impact on the development of SOA solutions as they shape the vocabulary,

tools, and often the thought patterns of SOA developers.

Unfortunately, standards committees are often tasked with creating specifications before

the usage patterns are well known or understood. Because standards specifications have

to remain static to be consistently adopted, many resulting standards can make the

implementation of popular patterns cumbersome or even impossible [18].

Incorporating common patterns into the standards development process can help ensure

that the standards are not purely based on architectural models but also on actual usage in

the community. Because good patterns come only with actual usage this has likely to be

done in an iterative process.

Conclusion

Patterns have gone mainstream and have occasionally become the victims of their own

success. As pattern books and papers flood bookstores and the Web we should keep an

eye out for many new useful patterns that teach us how to effectively design, implement

and manage service-oriented architectures. We have to be patient, though, as good

patterns can only come from real experience.

SOA Patterns – New Insights or Recycled Knowledge?

Gregor Hohpe www.eaipatterns.com 10

Bibliography

[1] Hype Cycle, Gartner, http://www.gartner.com/pages/story.php.id.8795.s.8.jsp

[2] Enterprise Integration Patterns, Hohpe, Woolf, Addison-Wesley, 2003

[3] Patterns of Enterprise Application Architecture, Fowler, Addison-Wesley, 2002

[4] Object-oriented Software Construction, Meyer, Prentice Hall, 1997

[5] Open-closed Principle, Martin,

http://www.objectmentor.com/resources/articles/ocp.pdf

[6] Writing Software Patterns, Fowler,

http://martinfowler.com/articles/writingPatterns.html

[7] Design Patterns, Gamma et al, Addison-Wesley, 1995

[8] An Introduction to Software Architecture, David Garlan and Mary Shaw, 1994,

CMU-CS-94-166

[9] Developing in a Service-Oriented World, Hohpe, January 2005, GI Lecture Notes in

Informatics P-65

[10] SOA Enterprise Patterns, Lubinsky, Manolescu, http://orchestrationpatterns.com

[11] Good Composers are Few and Far in Between, Gregor's Ramblings,

http://www.eaipatterns.com/ramblings/19_composing.html

[12] Programming Without a Call Stack – Event-driven Architectures, Gregor Hohpe,

http://www.eaipatterns.com/docs/EDA.pdf

[13] SOA Patterns, Rotem-Gal-Oz, http://www.soapatternsbook.com

[14] Pattern Language for Service Discovery, in Pattern Languages of Program Design 5,

Manolescu, Voelter, Noble, 2006, Addison-Wesley

[15] Security Patterns, Schumacher et al, 2006, Wiley

[16] Workshop Report: Conversation Patterns, Hohpe, June 2006, Dagstuhl Seminar

Proceesings 06291

[17] Service Interaction Patterns: Towards a Reference Framework for Service-based

Business Process Interconnection. Barros, Dumas ter Hofstede: Technical Report

FIT-TR-2005-02, Faculty of Information Technology, Queensland University of

Technology, Brisbane, Australia, March 2005.

[18] Workflow Patterns, Aalst et al., http://is.tm.tue.nl/research/patterns/patterns.htm.

[19] Pattern-Oriented Software Architecture, Vol. 4, Buschmann et al, 2007, Wiley

